Monitoring Essential Biodiversity Variables at the Species Level

The Group on Earth Observations Biodiversity Observation Network (GEO BON) is developing a monitoring framework around a set of Essential Biodiversity Variables (EBVs) which aims at facilitating data integration, spatial scaling and contributing to the filling of gaps. Here we build on this framework to explore the monitoring of EBV classes at the species level: species populations, species traits and community composition. We start by discussing cross-cutting issues on species monitoring such as the identification of the question to be addressed, the choice of variables, taxa and spatial sampling scheme. Next, we discuss how to monitor EBVs for specific taxa, including mammals, amphibians, butterflies and plants. We show how the monitoring of species EBVs allows monitoring changes in the supply of ecosystem services. We conclude with a discussion of challenges in upscaling local observations to global EBVs and how indicator and model development can help address this challenge.

[1]  P. Taberlet,et al.  Species detection using environmental DNA from water samples , 2008, Biology Letters.

[2]  Samuel T. Turvey,et al.  Estimating animal density using camera traps without the need for individual recognition , 2008 .

[3]  J. Nichols,et al.  Monitoring for conservation. , 2006, Trends in ecology & evolution.

[4]  Eduardo M. Venticinque,et al.  An evaluation of field techniques for monitoring terrestrial mammal populations in Amazonia , 2011 .

[5]  Kate E. Jones,et al.  Impacts of biodiversity on the emergence and transmission of infectious diseases , 2010, Nature.

[6]  Denis Couvet,et al.  Scientific contributions of extensive biodiversity monitoring. , 2011, Comptes rendus biologies.

[7]  Stanley T. Asah,et al.  The IPBES Conceptual Framework - connecting nature and people , 2015 .

[8]  F. Jiguet,et al.  Differences in the climatic debts of birds and butterflies at a continental scale , 2012 .

[9]  Len Thomas,et al.  Distance software: design and analysis of distance sampling surveys for estimating population size , 2009, The Journal of applied ecology.

[10]  N. Dulvy,et al.  Linked indicator sets for addressing biodiversity loss , 2011, Oryx.

[11]  S. Harris,et al.  Is it possible to monitor mammal population changes from counts of road traffic casualties? An analysis using Bristol's red foxes Vulpes vulpes as an example , 2004 .

[12]  M. Willig,et al.  Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight , 2016, PLoS biology.

[13]  A. Hyatt,et al.  Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. , 2004, Diseases of aquatic organisms.

[14]  S. Harris,et al.  A Review of British Mammals: Population Estimates and Conservation Status of British Mammals Other Than Cetaceans , 1995 .

[15]  Henrique M. Pereira,et al.  Global Biodiversity Change: The Bad, the Good, and the Unknown , 2012 .

[16]  Dirk S. Schmeller,et al.  European species and habitat monitoring: where are we now? , 2008, Biodiversity and Conservation.

[17]  N. Pettorelli,et al.  Satellite remote sensing for applied ecologists: opportunities and challenges , 2014 .

[18]  Georgina M. Mace,et al.  Distorted Views of Biodiversity: Spatial and Temporal Bias in Species Occurrence Data , 2010, PLoS biology.

[19]  D. J. Brus,et al.  Sampling for Natural Resource Monitoring , 2006 .

[20]  Mark Hill,et al.  Local frequency as a key to interpreting species occurrence data when recording effort is not known , 2012 .

[21]  F. Jiguet,et al.  An Indicator of the Impact of Climatic Change on European Bird Populations , 2009, PloS one.

[22]  Matt Walpole,et al.  Progress towards the Aichi Biodiversity Targets: an assessment of biodiversity trends, policy scenarios and key actions , 2014 .

[23]  J. P. Collins,et al.  Extinction in Our Times: Global Amphibian Decline , 2009 .

[24]  M. Begon,et al.  Host-pathogen population dynamics, basic reproductive rates and threshold densities , 1998 .

[25]  E. Ernst,et al.  Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. , 2005, Trends in biotechnology.

[26]  Josef Settele,et al.  Butterfly monitoring in Europe: methods, applications and perspectives , 2008, Biodiversity and Conservation.

[27]  C. Wiuf,et al.  Monitoring endangered freshwater biodiversity using environmental DNA. , 2012, Molecular ecology.

[28]  M. Fisher,et al.  Environmental detection of Batrachochytrium dendrobatidis in a temperate climate. , 2007, Diseases of aquatic organisms.

[29]  C. Biancardi,et al.  Monitoring small and arboreal mammals by camera traps: effectiveness and applications , 2012, Acta Theriologica.

[30]  B. Collen,et al.  Field surveys for the Endangered pygmy hippopotamus Choeropsis liberiensis in Sapo National Park, Liberia , 2011, Oryx.

[31]  D. Roberts,et al.  How many herbarium specimens are needed to detect threatened species , 2011 .

[32]  S. Harris,et al.  An integrated monitoring programme for terrestrial mammals in Britain , 2004 .

[33]  M. Clayton,et al.  Land‐Cover Change and Avian Diversity in the Conterminous United States , 2012, Conservation biology : the journal of the Society for Conservation Biology.

[34]  H. D. Cooper,et al.  A mid-term analysis of progress toward international biodiversity targets , 2014, Science.

[35]  H. Pereira,et al.  Organismal complexity is an indicator of species existence value , 2008 .

[36]  Robert P. Anderson,et al.  Ecological Niches and Geographic Distributions , 2011 .

[37]  Erle C. Ellis,et al.  Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations , 2012, Frontiers in Ecology and the Environment.

[38]  F. Gleason,et al.  Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. , 2007, Diseases of aquatic organisms.

[39]  S. Davis,et al.  Centres of plant diversity : a guide and strategy for their conservation , 1996 .

[40]  H. Pereira,et al.  Towards the global monitoring of biodiversity change. , 2006, Trends in ecology & evolution.

[41]  R. D. Semlitsch,et al.  TERRESTRIAL DRIFT FENCES WITH PITFALL TRAPS AN EFFECTIVE TECHNIQUE FOR QUANTITATIVE SAMPLING OF ANIMAL POPULATIONS , 1982 .

[42]  Helmut Hillebrand,et al.  Biodiversity in a complex world: consolidation and progress in functional biodiversity research. , 2009, Ecology letters.

[43]  J. Brownstein,et al.  Emerging fungal threats to animal, plant and ecosystem health , 2012, Nature.

[44]  P. Henry,et al.  When can we ignore the problem of imperfect detection in comparative studies? , 2012 .

[45]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[46]  Ben Collen,et al.  Biodiversity Monitoring and Conservation: Bridging the Gaps Between Global Commitment and Local Action , 2013 .

[47]  Arco J. van Strien,et al.  Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models , 2013 .

[48]  Ben Collen,et al.  Global effects of land use on local terrestrial biodiversity , 2015, Nature.

[49]  Timothy G. O'Brien,et al.  The Wildlife Picture Index: monitoring top trophic levels , 2010 .

[50]  Lander Baeten,et al.  Global meta-analysis reveals no net change in local-scale plant biodiversity over time , 2013, Proceedings of the National Academy of Sciences.

[51]  Stuart L. Pimm,et al.  Global patterns of terrestrial vertebrate diversity and conservation , 2013, Proceedings of the National Academy of Sciences.

[52]  A. Magurran,et al.  Measuring Biological Diversity , 2004 .

[53]  C. Elzinga,et al.  Monitoring Plant and Animal Populations , 2001 .

[54]  Marc Kéry,et al.  Metapopulation dynamics in the butterfly Hipparchia semele changed decades before occupancy declined in The Netherlands. , 2011, Ecological applications : a publication of the Ecological Society of America.

[55]  Neil Brummitt,et al.  The Sampled Red List Index for Plants, phase II: ground-truthing specimen-based conservation assessments , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  A. Townsend Peterson,et al.  Essential biodiversity variables are not global , 2018, Biodiversity and Conservation.

[57]  Jonathan D. G. Jones,et al.  Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss , 2018 .

[58]  James D. Nichols,et al.  Monitoring of biological diversity in space and time , 2001 .

[59]  W. Kendall,et al.  Seeking a second opinion: uncertainty in disease ecology. , 2010, Ecology letters.

[60]  Louise McRae,et al.  Global biodiversity monitoring: From data sources to Essential Biodiversity Variables , 2017 .

[61]  Jeremy J. D. Greenwood,et al.  Monitoring terrestrial mammals in the UK: past, present and future, using lessons from the bird world , 2004 .

[62]  D. E. Scott,et al.  Influence of wetland hydroperiod on diversity and abundance of metamorphosing juvenile amphibians , 2004, Wetlands Ecology and Management.

[63]  Neil Brummitt,et al.  Towards Target 1 of the Global Strategy for Plant Conservation : a working list of all known plant species-progress and prospects , 2008 .

[64]  S. Lavorel,et al.  Incorporating plant functional diversity effects in ecosystem service assessments , 2007, Proceedings of the National Academy of Sciences.

[65]  Rob H. G. Jongman,et al.  Global Biodiversity Monitoring , 2010 .

[66]  Linda A. Weir,et al.  North American Amphibian Monitoring Program (NAAMP) , 2005 .

[67]  Robert J. Rudd,et al.  Bat White-Nose Syndrome: An Emerging Fungal Pathogen? , 2009, Science.

[68]  Piero Visconti,et al.  Global habitat suitability models of terrestrial mammals , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[69]  A. Glen,et al.  Optimising Camera Traps for Monitoring Small Mammals , 2013, PloS one.

[70]  J. Flowerdew,et al.  Advances in the conservation of British mammals, 1954–2004: 50 years of progress with The Mammal Society , 2004 .

[71]  Tatsuya Amano,et al.  Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security , 2013, Proceedings of the Royal Society B: Biological Sciences.

[72]  Dirk S. Schmeller,et al.  Priorities for biodiversity monitoring in Europe: A review of supranational policies and a novel scheme for integrative prioritization , 2013 .

[73]  Sandra Lavorel,et al.  Using plant functional traits to understand the landscape distribution of multiple ecosystem services , 2011 .

[74]  Peter Haase,et al.  Bridging the gap between biodiversity data and policy reporting needs: An Essential Biodiversity Variables perspective , 2016 .

[75]  Sandra Díaz,et al.  Towards an assessment of multiple ecosystem processes and services via functional traits , 2010, Biodiversity and Conservation.

[76]  Walter Jetz,et al.  Integrating biodiversity distribution knowledge: toward a global map of life. , 2012, Trends in ecology & evolution.

[77]  E. Aronova,et al.  Big Science and Big Data in Biology: From the International Geophysical Year through the International Biological Program to the Long Term Ecological Research (LTER) Network, 1957––Present , 2010 .

[78]  C. S. Robbins,et al.  The breeding bird survey 1967 and 1968 , 1969 .

[79]  S. Breck Book Review: Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters , 2006 .

[80]  Peter Carey,et al.  Environmental stratifications as the basis for national, European and global ecological monitoring , 2013 .

[81]  Julia P. G. Jones,et al.  The Why, What, and How of Global Biodiversity Indicators Beyond the 2010 Target , 2011, Conservation biology : the journal of the Society for Conservation Biology.

[82]  G. Mace,et al.  Biodiversity and ecosystem services: a multilayered relationship. , 2012, Trends in ecology & evolution.

[83]  J. Andrew Royle,et al.  Spatially explicit models for inference about density in unmarked or partially marked populations , 2011, 1112.3250.

[84]  David B. Roy,et al.  Statistics for citizen science: extracting signals of change from noisy ecological data , 2014 .

[85]  A. Dobson,et al.  Projected Impacts of Climate and Land-Use Change on the Global Diversity of Birds , 2007, PLoS biology.

[86]  N. Brummitt,et al.  Applications of the IUCN Red List: towards a global barometer for plant diversity , 2008 .