Synthesis, in-vitro antiprotozoal activity and molecular docking study of isothiocyanate derivatives.

[1]  P. Salehi,et al.  Antiprotozoal Diterpenes from Perovskia abrotanoides , 2018, Planta Medica.

[2]  K. Haldar,et al.  Drug resistance in Plasmodium , 2018, Nature Reviews Microbiology.

[3]  C. M. Calvet,et al.  Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. , 2018, European journal of medicinal chemistry.

[4]  Maria Paola Costi,et al.  Crassiflorone derivatives that inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH) and Trypanosoma cruzi trypanothione reductase (TcTR) and display trypanocidal activity. , 2017, European journal of medicinal chemistry.

[5]  Darío E. Balcazar,et al.  Novel 2-arylazoimidazole derivatives as inhibitors of Trypanosoma cruzi proliferation: Synthesis and evaluation of their biological activity. , 2017, European journal of medicinal chemistry.

[6]  Y. Pérez-Pertejo,et al.  Antileishmanial effect of new indeno-1,5-naphthyridines, selective inhibitors of Leishmania infantum type IB DNA topoisomerase. , 2016, European journal of medicinal chemistry.

[7]  M. Esmaeili,et al.  Synthesis of novel 1,2,3-triazole tethered 1,3-disubstituted β-carboline derivatives and their cytotoxic and antibacterial activities , 2016, Medicinal Chemistry Research.

[8]  Leandro Simonetti,et al.  Enzymatic synthesis of bile acid derivatives and biological evaluation against Trypanosoma cruzi. , 2015, Bioorganic & medicinal chemistry.

[9]  M. Frédérich,et al.  Structure-activity relationship of hybrids of Cinchona alkaloids and bile acids with in vitro antiplasmodial and antitrypanosomal activities. , 2015, European journal of medicinal chemistry.

[10]  G. Dobrikov,et al.  Antimycobacterial activity generated by the amide coupling of (-)-fenchone derived aminoalcohol with cinnamic acids and analogues. , 2014, Bioorganic & medicinal chemistry letters.

[11]  Jean-François Truchon,et al.  Natural products in medicine: transformational outcome of synthetic chemistry. , 2014, Journal of medicinal chemistry.

[12]  Christel A. S. Bergström,et al.  Pyridyl benzamides as a novel class of potent inhibitors for the kinetoplastid Trypanosoma brucei. , 2014, Journal of medicinal chemistry.

[13]  C. Parkinson,et al.  Structure-Activity Relationship Study of Sesquiterpene Lactones and Their Semi-Synthetic Amino Derivatives as Potential Antitrypanosomal Products , 2014, Molecules.

[14]  R. Krauth-Siegel,et al.  Antitrypanosomal Isothiocyanate and Thiocarbamate Glycosides from Moringa peregrina , 2013, Planta Medica.

[15]  J. Baell,et al.  Drug discovery and human African trypanosomiasis: a disease less neglected? , 2013, Future medicinal chemistry.

[16]  M. Frédérich,et al.  Antiparasitic hybrids of Cinchona alkaloids and bile acids. , 2013, European journal of medicinal chemistry.

[17]  C. Pouton,et al.  Synthesis and Biological Evaluation of N‐Substituted Noscapine Analogues , 2012, ChemMedChem.

[18]  W. Setzer,et al.  In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants , 2012, PLoS neglected tropical diseases.

[19]  E. S. Coimbra,et al.  Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline , 2012, Organic and medicinal chemistry letters.

[20]  D. C. Miguel,et al.  Synthesis and in vitro activity of limonene derivatives against Leishmania and Trypanosoma. , 2010, European journal of medicinal chemistry.

[21]  D. Taşdemir,et al.  Inhibitory Activity of Marine Sponge-Derived Natural Products against Parasitic Protozoa , 2010, Marine drugs.

[22]  Ronan Batista,et al.  Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products , 2009, Molecules.

[23]  W. Setzer,et al.  Comparative Molecular Docking of Antitrypanosomal Natural Products into Multiple Trypanosoma brucei Drug Targets , 2009, Molecules.

[24]  J. Marin,et al.  Bile acids: chemistry, physiology, and pathophysiology. , 2009, World journal of gastroenterology.

[25]  R. Krauth-Siegel,et al.  Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. , 2008, Biochimica et biophysica acta.

[26]  J. B. Christensen,et al.  A new efficient synthesis of isothiocyanates from amines using di-tert-butyl dicarbonate , 2008 .

[27]  S. Balalaie,et al.  2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate as an efficient coupling reagent for the amidation and phenylhydrazation of carboxylic acids at room temperature , 2007 .

[28]  R. Aneja,et al.  Synthesis and biological evaluation of a cyclic ether fluorinated noscapine analog. , 2006, Bioorganic & medicinal chemistry.

[29]  R. Chandra,et al.  Development of a Novel Nitro-Derivative of Noscapine for the Potential Treatment of Drug-Resistant Ovarian Cancer and T-Cell Lymphoma , 2006, Molecular Pharmacology.

[30]  R. Schirmer,et al.  Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia. , 2005, Angewandte Chemie.

[31]  J. Falck,et al.  Facile Reduction of Carboxylic Acids, Esters, Acid Chlorides, Amides and Nitriles to Alcohols or Amines Using NaBH4/BF3·Et2O , 2004 .

[32]  N. Ghosh,et al.  A Convenient Synthesis of Aryl-Substituted N-Carbamoyl/N-Thiocarbamoyl Narcotine and Related Compounds , 2002 .

[33]  R. Griffith,et al.  New anti-malarial compounds from database searching. , 2002, Bioorganic & medicinal chemistry letters.

[34]  C. Spry,et al.  Structure-activity analysis of CJ-15,801 analogues that interact with Plasmodium falciparum pantothenate kinase and inhibit parasite proliferation. , 2018, European journal of medicinal chemistry.

[35]  T. Ha-Duong,et al.  Comparative study of structural models of Leishmania donovani and human GDP-mannose pyrophosphorylases. , 2016, European journal of medicinal chemistry.