To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps

Andrés Hidalgo | Georg Schett | Rostyslav Bilyy | Felipe Andrade | Jonas Hahn | Luis E. Munoz | Paul Kubes | Norma Maugeri | Mariana J. Kaplan | Peter Vandenabeele | Poorya Amini | Seamus J. Martin | V. Nizet | P. Vandenabeele | P. Kubes | H. Anders | M. Shlomchik | M. Radic | Jyaysi Desai | A. Zarbock | H. Simon | S. Yousefi | G. Schett | J. Knight | M. Köckritz-Blickwede | Rachael Gordon | E. Kolaczkowska | R. Bilyy | N. Dwivedi | J. Hahn | M. Herrmann | C. Maueröder | L. Munoz | C. Schauer | T. Berghe | D. Clancy | N. Maugeri | P. Rovere-Querini | A. Manfredi | M. Hoffmann | A. Hidalgo | M. Kaplan | I. Mitroulis | P. Skendros | Hans-Joachim Anders | S. Boeltz | T. Dumych | M. Leppkes | Victor Nizet | Alexander Zarbock | L. Vitkov | K. Ritis | Maren Köckritz-Blickwede | Tom Vanden Berghe | Ljubomir Vitkov | Martin Herrmann | Shida Yousefi | Hans-Uwe Simon | Tetiana Dumych | Jyaysi Desai | Elzbieta Kolaczkowska | Konstantinos Ritis | Sebastian Boeltz | Simon Chatfield | Iwona Cichon | Danielle M. Clancy | Nishant Dwivedi | Rachael Ann Gordon | Markus H. Hoffmann | Jason S. Knight | Moritz Leppkes | Angelo A. Manfredi | Christian Maueröder | Ioannis Mitroulis | Daigo Nakazawa | Indira Neeli | Elmar Pieterse | Marko Z Radic | Christiane Reinwald | Patrizia Rovere-Querini | Michal Santocki | Christine Schauer | Mark Jay Shlomchik | Panagiotis Skendros | Darko Stojkov | Johan Vlag | S. Chatfield | I. Cichon | I. Neeli | D. Stojkov | J. Vlag | F. Andrade | Daigo Nakazawa | P. Amini | C. Reinwald | E. Pieterse | Michal Santocki | Simon M. Chatfield | Indira Neeli | Christian Maueröder | Sebastian Boeltz | Rachael A Gordon

[1]  R. Chaerkady,et al.  Evidence for a direct link between PAD4-mediated citrullination and the oxidative burst in human neutrophils , 2018, Scientific Reports.

[2]  O. Tatsiy,et al.  Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways , 2018, Front. Immunol..

[3]  I. Mitroulis,et al.  Autophagy in Neutrophils: From Granulopoiesis to Neutrophil Extracellular Traps , 2018, Front. Cell Dev. Biol..

[4]  G. Schett,et al.  Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases , 2018, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[5]  K. Schroder,et al.  Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps , 2018, Science Immunology.

[6]  R. Krüger,et al.  Gasdermin D plays a vital role in the generation of neutrophil extracellular traps , 2018, Science Immunology.

[7]  L. Scorrano,et al.  Neutrophil extracellular trap formation requires OPA1-dependent glycolytic ATP production , 2018, Nature Communications.

[8]  C. Licht,et al.  Relative antibacterial functions of complement and NETs: NETs trap and complement effectively kills bacteria , 2018, Molecular immunology.

[9]  Seamus J. Martin,et al.  Extracellular Neutrophil Proteases Are Efficient Regulators of IL-1, IL-33, and IL-36 Cytokine Activity but Poor Effectors of Microbial Killing. , 2018, Cell reports.

[10]  M. Khan,et al.  Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis , 2018, Front. Immunol..

[11]  Jing Wang Neutrophils in tissue injury and repair , 2018, Cell and Tissue Research.

[12]  K. Rogers,et al.  Monosodium Urate Crystals Generate Nuclease-Resistant Neutrophil Extracellular Traps via a Distinct Molecular Pathway , 2018, The Journal of Immunology.

[13]  S. Lipton,et al.  Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 , 2018, Cell Death & Differentiation.

[14]  O. Sørensen,et al.  NETQUANT: Automated Quantification of Neutrophil Extracellular Traps , 2018, Front. Immunol..

[15]  K. Zaal,et al.  A High-Throughput Real-Time Imaging Technique To Quantify NETosis and Distinguish Mechanisms of Cell Death in Human Neutrophils , 2018, The Journal of Immunology.

[16]  N. Câmara,et al.  Alkaline pH Promotes NADPH Oxidase-Independent Neutrophil Extracellular Trap Formation: A Matter of Mitochondrial Reactive Oxygen Species Generation and Citrullination and Cleavage of Histone , 2018, Front. Immunol..

[17]  T. Mayadas,et al.  Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury , 2018, Nature Medicine.

[18]  C. Sokollik,et al.  ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation , 2017, The Journal of cell biology.

[19]  Brandon G. Ginley,et al.  Computational detection and quantification of human and mouse neutrophil extracellular traps in flow cytometry and confocal microscopy , 2017, Scientific Reports.

[20]  T. Renné,et al.  Host DNases prevent vascular occlusion by neutrophil extracellular traps , 2017, Science.

[21]  P. Boor,et al.  Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin , 2017, Scientific Reports.

[22]  T. Fuchs,et al.  Missing in action—The meaning of cell death in tissue damage and inflammation , 2017, Immunological reviews.

[23]  H. Simon,et al.  Neither eosinophils nor neutrophils require ATG5‐dependent autophagy for extracellular DNA trap formation , 2017, Immunology.

[24]  R. Dey,et al.  Role of Mast Cells in clearance of Leishmania through extracellular trap formation , 2017, Scientific Reports.

[25]  M. Maitz,et al.  Neutrophil extracellular trap formation upon exposure of hydrophobic materials to human whole blood causes thrombogenic reactions. , 2017, Biomaterials science.

[26]  N. Maugeri,et al.  Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps , 2017, Pharmacological research.

[27]  T. Billiar,et al.  Aging‐related Atg5 defect impairs neutrophil extracellular traps formation , 2017, Immunology.

[28]  J. V. van Montfrans,et al.  Differential Signalling and Kinetics of Neutrophil Extracellular Trap Release Revealed by Quantitative Live Imaging , 2017, Scientific Reports.

[29]  S. Satchell,et al.  Neutrophil Extracellular Traps Drive Endothelial-to-Mesenchymal Transition , 2017, Arteriosclerosis, thrombosis, and vascular biology.

[30]  R. Krüger,et al.  Diverse stimuli engage different neutrophil extracellular trap pathways , 2017, eLife.

[31]  G. Pruijn,et al.  Peptidylarginine deiminase 2 is required for tumor necrosis factor alpha-induced citrullination and arthritis, but not neutrophil extracellular trap formation. , 2017, Journal of autoimmunity.

[32]  T. Mayadas,et al.  Lupus and proliferative nephritis are PAD4 independent in murine models. , 2017, JCI insight.

[33]  Georg Schett,et al.  Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps. , 2017, JCI insight.

[34]  W. V. van Cappellen,et al.  In vitro induction of NETosis: Comprehensive live imaging comparison and systematic review , 2017, PloS one.

[35]  H. Kikuchi,et al.  Spontaneous formation of neutrophil extracellular traps in serum‐free culture conditions , 2017, FEBS open bio.

[36]  P. Tak,et al.  Protein arginine deiminase 4 inhibition is sufficient for the amelioration of collagen‐induced arthritis , 2017, Clinical and experimental immunology.

[37]  W. Robinson,et al.  Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis , 2017, Science Immunology.

[38]  D. Pinsky,et al.  In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody–Mediated Venous Thrombosis , 2017, Arthritis & rheumatology.

[39]  S. Möller,et al.  Extracellular Acidification Inhibits the ROS-Dependent Formation of Neutrophil Extracellular Traps , 2017, Front. Immunol..

[40]  N. Palaniyar,et al.  Transcriptional firing helps to drive NETosis , 2017, Scientific Reports.

[41]  T. Helleday,et al.  Validation of an enzyme-linked immunosorbent assay for the quantification of citrullinated histone H3 as a marker for neutrophil extracellular traps in human plasma , 2017, Immunologic Research.

[42]  S. Muller,et al.  Capability of Neutrophils to Form NETs Is Not Directly Influenced by a CMA-Targeting Peptide , 2017, Front. Immunol..

[43]  J. Brewer,et al.  Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity , 2017, npj Vaccines.

[44]  M. Neurath,et al.  Ménage-à-Trois: The Ratio of Bicarbonate to CO2 and the pH Regulate the Capacity of Neutrophils to Form NETs , 2016, Front. Immunol..

[45]  R. Boukherroub,et al.  Oxidative Burst-Dependent NETosis Is Implicated in the Resolution of Necrosis-Associated Sterile Inflammation , 2016, Front. Immunol..

[46]  A. Mócsai,et al.  Reply to "Neutrophils are not required for resolution of acute gouty arthritis in mice" , 2016, Nature Medicine.

[47]  Volker Brinkmann,et al.  Immunodetection of NETs in Paraffin-Embedded Tissue , 2016, Front. Immunol..

[48]  L. Hilbrands,et al.  Neutrophils Discriminate between Lipopolysaccharides of Different Bacterial Sources and Selectively Release Neutrophil Extracellular Traps , 2016, Front. Immunol..

[49]  Felipe Andrade,et al.  A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis Mimics Based on Differential Requirements for Protein Citrullination , 2016, Front. Immunol..

[50]  A. Enk,et al.  Interindividual variation of NETosis in healthy donors: introduction and application of a refined method for extracellular trap quantification , 2016, Experimental dermatology.

[51]  P. Thompson,et al.  Nicotine induces neutrophil extracellular traps , 2016, Journal of leukocyte biology.

[52]  C. Carmona-Rivera,et al.  Induction and Quantification of NETosis , 2016, Current protocols in immunology.

[53]  G. Schett,et al.  Neutrophil Extracellular Traps Form a Barrier between Necrotic and Viable Areas in Acute Abdominal Inflammation , 2016, Front. Immunol..

[54]  P. Kubes,et al.  Pondering neutrophil extracellular traps with healthy skepticism , 2016, Cellular microbiology.

[55]  J. M. Brauner,et al.  Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation , 2016, Proceedings of the National Academy of Sciences.

[56]  T. Lämmermann,et al.  Neutrophil swarming: an essential process of the neutrophil tissue response , 2016, Immunological reviews.

[57]  H. Simon,et al.  NETosis – Does It Really Represent Nature’s “Suicide Bomber”? , 2016, Front. Immunol..

[58]  N. Thakker,et al.  Characterization of neutrophil function in Papillon‐Lefèvre syndrome , 2016, Journal of leukocyte biology.

[59]  M. Kaplan,et al.  The role of neutrophils and NETosis in autoimmune and renal diseases , 2016, Nature Reviews Nephrology.

[60]  C. van Kooten,et al.  A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes. , 2016, Autoimmunity reviews.

[61]  M. Herrmann,et al.  Review: Neutrophils as Invigorated Targets in Rheumatic Diseases , 2016, Arthritis & rheumatology.

[62]  V. Pascual,et al.  Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus , 2016, The Journal of experimental medicine.

[63]  H. Anders,et al.  Matters of life and death. How neutrophils die or survive along NET release and is “NETosis” = necroptosis? , 2016, Cellular and Molecular Life Sciences.

[64]  M. Neurath,et al.  Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis , 2016, Nature Communications.

[65]  I. Melero,et al.  Tumor-Produced Interleukin-8 Attracts Human Myeloid-Derived Suppressor Cells and Elicits Extrusion of Neutrophil Extracellular Traps (NETs) , 2016, Clinical Cancer Research.

[66]  A. Kuspa,et al.  Social amoebae trap and kill bacteria by casting DNA nets , 2016, Nature Communications.

[67]  H. Anders,et al.  PMA and crystal‐induced neutrophil extracellular trap formation involves RIPK1‐RIPK3‐MLKL signaling , 2016, European journal of immunology.

[68]  K. Elkon,et al.  Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease , 2015, Nature Medicine.

[69]  H. Simon,et al.  NET formation can occur independently of RIPK3 and MLKL signaling , 2015, European journal of immunology.

[70]  C. Harris,et al.  Flow cytometric assay for direct quantification of neutrophil extracellular traps in blood samples , 2015, American journal of hematology.

[71]  D. Kuhns,et al.  Isolation and Functional Analysis of Human Neutrophils , 2015, Current protocols in immunology.

[72]  S. Kummerfeld,et al.  Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling , 2015, Nature.

[73]  T. Cai,et al.  Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death , 2015, Nature.

[74]  Elizabeth E Gray,et al.  Cutting Edge: cGAS Is Required for Lethal Autoimmune Disease in the Trex1-Deficient Mouse Model of Aicardi–Goutières Syndrome , 2015, The Journal of Immunology.

[75]  Yue-ying Gu,et al.  Neutrophil Extracellular Trap Mitochondrial DNA and Its Autoantibody in Systemic Lupus Erythematosus and a Proof‐of‐Concept Trial of Metformin , 2015, Arthritis & rheumatology.

[76]  R. Zubarev,et al.  Release of Active Peptidyl Arginine Deiminases by Neutrophils Can Explain Production of Extracellular Citrullinated Autoantigens in Rheumatoid Arthritis Synovial Fluid , 2015, Arthritis & rheumatology.

[77]  D. Catalucci,et al.  Neutrophils promote Alzheimer's disease–like pathology and cognitive decline via LFA-1 integrin , 2015, Nature Medicine.

[78]  João A. Carriço,et al.  Automatic determination of NET (neutrophil extracellular traps) coverage in fluorescent microscopy images , 2015, Bioinform..

[79]  Julia Femel,et al.  Neutrophil Extracellular Traps Accumulate in Peripheral Blood Vessels and Compromise Organ Function in Tumor-Bearing Animals. , 2015, Cancer research.

[80]  C. Kahn,et al.  Diabetes primes neutrophils to undergo NETosis, which impairs wound healing , 2015, Nature Medicine.

[81]  M. Machado,et al.  Septic Shock in Advanced Age: Transcriptome Analysis Reveals Altered Molecular Signatures in Neutrophil Granulocytes , 2015, PloS one.

[82]  C. Bonorino,et al.  Respiratory Syncytial Virus Fusion Protein Promotes TLR-4–Dependent Neutrophil Extracellular Trap Formation by Human Neutrophils , 2015, PloS one.

[83]  P. Kubes,et al.  Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature , 2015, Nature Communications.

[84]  David M. Wilson,et al.  Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation , 2015, Nature chemical biology.

[85]  Z. Balogh,et al.  Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. , 2014, Journal of critical care.

[86]  F. Nielsen,et al.  Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses. , 2014, The Journal of clinical investigation.

[87]  Q. Wang,et al.  Neutrophils sense microbial size and selectively release neutrophil extracellular traps in response to large pathogens , 2014, Nature Immunology.

[88]  A. Fischer,et al.  Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. , 2014, The Journal of allergy and clinical immunology.

[89]  Werner Solbach,et al.  Immobilized Immune Complexes Induce Neutrophil Extracellular Trap Release by Human Neutrophil Granulocytes via FcγRIIIB and Mac-1 , 2014, The Journal of Immunology.

[90]  R. Gray,et al.  Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon , 2014, Nature Communications.

[91]  P. Hasler,et al.  Efficient Neutrophil Extracellular Trap Induction Requires Mobilization of Both Intracellular and Extracellular Calcium Pools and Is Modulated by Cyclosporine A , 2014, PloS one.

[92]  D. Wagner,et al.  Thrombosis: tangled up in NETs. , 2014, Blood.

[93]  Elizabeth Sapey,et al.  Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals , 2014, Aging cell.

[94]  T. Harrer,et al.  Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines , 2014, Nature Medicine.

[95]  M. Radic,et al.  Citrullination of autoantigens implicates NETosis in the induction of autoimmunity , 2013, Annals of the rheumatic diseases.

[96]  P. Kubes,et al.  NETosis: how vital is it? , 2013, Blood.

[97]  O. McCarty,et al.  Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. , 2013, American journal of physiology. Cell physiology.

[98]  J. Hodgin,et al.  Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. , 2013, The Journal of clinical investigation.

[99]  Bastian R. Angermann,et al.  Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo , 2013, Nature.

[100]  B. Bonaci-Nikolic,et al.  Serum DNase I activity in systemic lupus erythematosus: correlation with immunoserological markers, the disease activity and organ involvement , 2013, Clinical chemistry and laboratory medicine.

[101]  Pojen P. Chen,et al.  NETs Are a Source of Citrullinated Autoantigens and Stimulate Inflammatory Responses in Rheumatoid Arthritis , 2013, Science Translational Medicine.

[102]  M. Radic,et al.  Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release , 2013, Front. Immun..

[103]  Sai Kumar Chakka,et al.  Novel inhibitors of protein arginine deiminase with potential activity in multiple sclerosis animal model. , 2013, Journal of medicinal chemistry.

[104]  G. McFadden,et al.  Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. , 2013, Cell host & microbe.

[105]  M. Dikshit,et al.  Cytokines Induced Neutrophil Extracellular Traps Formation: Implication for the Inflammatory Disease Condition , 2012, PloS one.

[106]  M. Shlomchik,et al.  NADPH Oxidase Inhibits the Pathogenesis of Systemic Lupus Erythematosus , 2012, Science Translational Medicine.

[107]  M. Colombo,et al.  Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. , 2012, Blood.

[108]  Handong Zheng,et al.  PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures , 2012, Front. Immun..

[109]  A. Zychlinsky,et al.  Neutrophil extracellular traps: Is immunity the second function of chromatin? , 2012, The Journal of cell biology.

[110]  M. Asaduzzaman,et al.  Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo , 2012, Nature Medicine.

[111]  V. Nizet,et al.  Influences of Chloride and Hypochlorite on Neutrophil Extracellular Trap Formation , 2012, PloS one.

[112]  S. Akira,et al.  Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. , 2012, Cell host & microbe.

[113]  Z. Werb,et al.  Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. , 2012, The Journal of clinical investigation.

[114]  A. Blom,et al.  Neutrophil Extracellular Traps That Are Not Degraded in Systemic Lupus Erythematosus Activate Complement Exacerbating the Disease , 2012, The Journal of Immunology.

[115]  K. Preissner,et al.  Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones , 2012, PloS one.

[116]  P. Dri,et al.  Killing by neutrophil extracellular traps: fact or folklore? , 2012, Blood.

[117]  D. Wagner,et al.  Neutrophil extracellular traps promote deep vein thrombosis in mice , 2012, Journal of thrombosis and haemostasis : JTH.

[118]  D. Boumpas,et al.  Neutrophil Extracellular Trap Formation Is Associated with IL-1β and Autophagy-Related Signaling in Gout , 2011, PloS one.

[119]  H. Khalak,et al.  Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus , 2011, Nature Genetics.

[120]  Mariana J. Kaplan,et al.  Neutrophils in the pathogenesis and manifestations of SLE , 2011, Nature Reviews Rheumatology.

[121]  H. Simon,et al.  Inflammation-Associated Autophagy-Related Programmed Necrotic Death of Human Neutrophils Characterized by Organelle Fusion Events , 2011, The Journal of Immunology.

[122]  H. Vanetten,et al.  Extracellular DNA: the tip of root defenses? , 2011, Plant science : an international journal of experimental plant biology.

[123]  H. Simon,et al.  Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. , 2011, The Journal of allergy and clinical immunology.

[124]  Deepak Poudyal,et al.  Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. , 2011, American journal of physiology. Gastrointestinal and liver physiology.

[125]  Tomoki Ito,et al.  Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA–Peptide Complexes in Systemic Lupus Erythematosus , 2011, Science Translational Medicine.

[126]  J. Connolly,et al.  Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus , 2011, Science Translational Medicine.

[127]  P. Vandenabeele,et al.  Neutrophil extracellular trap cell death requires both autophagy and superoxide generation , 2011, Cell Research.

[128]  V. Wahn,et al.  Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. , 2011, Blood.

[129]  M. Surette,et al.  A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to Staphylococcus aureus , 2010, The Journal of Immunology.

[130]  Abdul Hakkim,et al.  Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps , 2010, The Journal of cell biology.

[131]  S. Walmsley,et al.  Distinct Cell Death Programs in Monocytes Regulate Innate Responses Following Challenge with Common Causes of Invasive Bacterial Disease , 2010, The Journal of Immunology.

[132]  Michael R. Lindberg,et al.  PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps , 2010, The Journal of experimental medicine.

[133]  J. Hartwig,et al.  Extracellular DNA traps promote thrombosis , 2010, Proceedings of the National Academy of Sciences.

[134]  Abdul Hakkim,et al.  Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis , 2010, Proceedings of the National Academy of Sciences.

[135]  H. Simon,et al.  Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps , 2009, Cell Death and Differentiation.

[136]  Jun Xu,et al.  Extracellular histones are major mediators of death in sepsis , 2009, Nature Medicine.

[137]  W. Nacken,et al.  Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans , 2009, PLoS pathogens.

[138]  Abdul Hakkim,et al.  Restoration of NET formation by gene therapy in CGD controls aspergillosis. , 2009, Blood.

[139]  Z. Werb,et al.  Netting neutrophils in autoimmune small-vessel vasculitis , 2009, Nature Medicine.

[140]  C. Allis,et al.  Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation , 2009, The Journal of cell biology.

[141]  M. Turner,et al.  Chronic granulomatous disease as a risk factor for autoimmune disease. , 2008, The Journal of allergy and clinical immunology.

[142]  A. Straumann,et al.  Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense , 2008, Nature Medicine.

[143]  S. Diamond,et al.  Neutrophil Isolation Protocol , 2008, Journal of visualized experiments : JoVE.

[144]  M. Hollenberg,et al.  Role of protease‐activated receptors in inflammatory responses, innate and adaptive immunity , 2008, Journal of leukocyte biology.

[145]  B. Henriques-Normark,et al.  ETosis: A Novel Cell Death Pathway , 2008, Science Signaling.

[146]  M. Rohde,et al.  Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. , 2008, Blood.

[147]  M. Radic,et al.  Histone Deimination As a Response to Inflammatory Stimuli in Neutrophils1 , 2008, The Journal of Immunology.

[148]  Stephen R. Clark,et al.  Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood , 2007, Nature Medicine.

[149]  S. Grinstein,et al.  Unconventional Roles of the NADPH Oxidase: Signaling, Ion Homeostasis, and Cell Death , 2007, Science's STKE.

[150]  V. Wahn,et al.  Novel cell death program leads to neutrophil extracellular traps , 2007, The Journal of Cell Biology.

[151]  J. Gómez-Reino,et al.  Novel DNASE I mutations related to systemic lupus erythematosus. , 2004, Arthritis and rheumatism.

[152]  A. Zychlinsky,et al.  Neutrophil Extracellular Traps Kill Bacteria , 2004, Science.

[153]  F. Fonnum,et al.  Involvement of the extracellular signal regulated kinase pathway in hydrocarbon-induced reactive oxygen species formation in human neutrophil granulocytes. , 2003, Toxicology and applied pharmacology.

[154]  C. Pham,et al.  Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. , 2002, The Journal of clinical investigation.

[155]  T. Möröy,et al.  Features of systemic lupus erythematosus in Dnase1-deficient mice , 2000, Nature Genetics.

[156]  S. Holland,et al.  Genetic, biochemical, and clinical features of chronic granulomatous disease. , 2000, Medicine.

[157]  Aitken Ml Clinical trials of recombinant human DNase in cystic fibrosis patients , 1993 .

[158]  M. Kaplan,et al.  Disentangling the role of neutrophil extracellular traps in rheumatic diseases. , 2017, Current opinion in rheumatology.

[159]  I. Chapple,et al.  Characterization, Quantification, and Visualization of Neutrophil Extracellular Traps. , 2017, Methods in molecular biology.

[160]  Y. Shoenfeld,et al.  Degradation of neutrophil extracellular traps is decreased in patients with antiphospholipid syndrome. , 2014, Clinical and experimental rheumatology.

[161]  P. Cardona,et al.  Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis. , 2014, Tuberculosis.

[162]  C. Harbort,et al.  Induction and quantification of neutrophil extracellular traps. , 2014, Methods in molecular biology.

[163]  M. Gougerot-Pocidalo,et al.  Zymosan induces NADPH oxidase activation in human neutrophils by inducing the phosphorylation of p47phox and the activation of Rac2: involvement of protein tyrosine kinases, PI3Kinase, PKC, ERK1/2 and p38MAPkinase. , 2013, Biochemical pharmacology.

[164]  M. Glogauer,et al.  Quantification and visualization of neutrophil extracellular traps (NETs) from murine bone marrow-derived neutrophils. , 2013, Methods in molecular biology.

[165]  C. Benjamim,et al.  Characterization of neutrophil extracellular traps in cats naturally infected with feline leukemia virus. , 2010, The Journal of general virology.

[166]  J. Ostojić,et al.  Fish cast NETs: neutrophil extracellular traps are released from fish neutrophils. , 2007, Developmental and comparative immunology.

[167]  B. Zimm,et al.  Chromosome-sized DNA molecules from Drosophila , 2004, Chromosoma.

[168]  M. Aitken Clinical trials of recombinant human DNase in cystic fibrosis patients. , 1993, Monaldi archives for chest disease = Archivio Monaldi per le malattie del torace.