Landau Damping to Partially Locked States in the Kuramoto Model
暂无分享,去创建一个
Helge Dietert | Bastien Fernandez | David G'erard-Varet | B. Fernandez | David G'erard-Varet | H. Dietert
[1] Steven H. Strogatz,et al. The Spectrum of the Partially Locked State for the Kuramoto Model , 2007, J. Nonlinear Sci..
[2] B. Fernandez,et al. Landau Damping in the Kuramoto Model , 2014, 1410.6006.
[3] Jan van Neerven,et al. The Asymptotic Behaviour of Semigroups of Linear Operators , 1996 .
[4] Amnon Pazy,et al. Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.
[5] C. Lancellotti. On the Vlasov Limit for Systems of Nonlinearly Coupled Oscillators without Noise , 2005 .
[6] S. Strogatz,et al. Stability of incoherence in a population of coupled oscillators , 1991 .
[7] P. Chossat,et al. Methods in Equivariant Bifurcations and Dynamical Systems , 2000 .
[8] S. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .
[9] D. Abrams,et al. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators , 2014, 1403.6204.
[10] Landau damping and inhomogeneous reference states , 2015 .
[11] H. Langer. E. Lukacs, Characteristic functions. X + 350 S. London 1970. Charles Griffin+Co. Ltd., 42 Drucy Lane. London WC 2. Preis geb. £ 5.50 , 1972 .
[12] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[13] A. Winfree. Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.
[14] Matthias Wolfrum,et al. Bifurcations in the Sakaguchi–Kuramoto model , 2013 .
[15] Yoshiki Kuramoto,et al. Self-entrainment of a population of coupled non-linear oscillators , 1975 .
[16] Juan P. Torres,et al. The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .
[17] Hidetsugu Sakaguchi,et al. Cooperative Phenomena in Coupled Oscillator Systems under External Fields , 1988 .
[18] C. Villani,et al. On Landau damping , 2009, 0904.2760.
[19] S. Strogatz,et al. Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping. , 1992, Physical review letters.
[20] Jeffrey Rauch,et al. Hyperbolic Partial Differential Equations and Geometric Optics , 2012 .
[21] W. Rudin. Real and complex analysis , 1968 .
[22] Yoshiki Kuramoto,et al. Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.
[23] Walter A. Strauss,et al. On continuity of functions with values in various Banach spaces , 1966 .
[24] Tosio Kato. Perturbation theory for linear operators , 1966 .
[25] E. Ott,et al. Low dimensional behavior of large systems of globally coupled oscillators. , 2008, Chaos.
[26] J. A. Carrillo,et al. Contractivity of Transport Distances for the Kinetic Kuramoto Equation , 2013, 1301.1883.
[27] E. Faou,et al. Landau Damping in Sobolev Spaces for the Vlasov-HMF Model , 2014, 1403.1668.
[28] A. Nordenfelt. Entropy constraints on convergence in the infinite-N Kuramoto model. , 2015, Chaos.
[29] E. Lukács. CERTAIN ENTIRE CHARACTERISTIC FUNCTIONS , 2005 .
[30] E. Ott,et al. Exact results for the Kuramoto model with a bimodal frequency distribution. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[31] Hayato Chiba,et al. A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model , 2010, Ergodic Theory and Dynamical Systems.
[32] J. Carrillo,et al. A P ] 9 J an 2 01 3 CONTRACTIVITY OF THE WASSERSTEIN METRIC FOR THE KINETIC KURAMOTO EQUATION , 2013 .
[33] Seung‐Yeal Ha,et al. Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model , 2012 .
[34] Y. Katznelson. An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .
[35] Helge Dietert,et al. Stability and bifurcation for the Kuramoto model , 2014, 1411.3752.
[36] Michael I. Weinstein,et al. Asymptotic stability of solitary waves , 1994 .