Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet

[1]  P. Kotetes,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[2]  S. Tsirkin,et al.  Negative flatband magnetism in a spin-orbit coupled kagome magnet , 2019 .

[3]  S. Tsirkin,et al.  Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet , 2019, Nature Physics.

[4]  Shuang Jia,et al.  Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet , 2018, Nature.

[5]  C. Felser,et al.  Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2 , 2017, Physical Review B.

[6]  H. Weng,et al.  Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions , 2017, Nature Communications.

[7]  C. Felser,et al.  Giant anomalous Hall effect in a ferromagnetic Kagomé-lattice semimetal , 2017, Nature Physics.

[8]  Gemma de la Flor Martin,et al.  Crystallography online by the Bilbao Crystallographic Server , 2017 .

[9]  Jing Wang,et al.  Topological states of condensed matter. , 2017, Nature materials.

[10]  B. Keimer,et al.  The physics of quantum materials , 2017, Nature Physics.

[11]  Liang Fu,et al.  Massive Dirac fermions in a ferromagnetic kagome metal , 2017, Nature.

[12]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[13]  M. Zahid Hasan,et al.  Discovery of Weyl fermion semimetals and topological Fermi arc states , 2017, 1702.07310.

[14]  H. Nakamura,et al.  Low-field anomalous magnetic phase in the kagome-lattice shandite C o 3 S n 2 S 2 , 2017, 1702.05627.

[15]  Xiao-Gang Wen,et al.  Colloquium : Zoo of quantum-topological phases of matter , 2016, 1610.03911.

[16]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2016, Nature.

[17]  A. Amato,et al.  High pressure research using muons at the Paul Scherrer Institute , 2016, 1603.08847.

[18]  Su-Yang Xu,et al.  Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals. , 2016, Physical review letters.

[19]  C. Felser,et al.  Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.

[20]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[21]  G. Prando,et al.  Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor , 2015, Nature Communications.

[22]  Yize Jin,et al.  Topological insulators , 2014, Topology in Condensed Matter.

[23]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[24]  A. Vishwanath,et al.  Beyond Band Insulators: Topology of Semi-metals and Interacting Phases , 2013, 1301.0330.

[25]  Daniel G. Nocera,et al.  Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.

[26]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[27]  A. Suter,et al.  Musrfit: A Free Platform-Independent Framework for μSR Data Analysis , 2011, 1111.1569.

[28]  A. Amato,et al.  Muon spin rotation investigation of the pressure effect on the magnetic penetration depth in YBa 2 Cu 3 O x , 2011, 1107.1341.

[29]  D. Huse,et al.  Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet , 2010, Science.

[30]  M Zahid Hasan,et al.  Topological Insulators , 2010, 1002.3895.

[31]  A. Wills,et al.  Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe3Sn2 , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  A. Leithe-Jasper,et al.  Photoemission study of electronic structure of the half-metallic ferromagnet Co3Sn2S2 , 2009 .

[33]  Gerard G. Sobany,et al.  A powder neutron diffraction study of the metallic ferromagnet Co3Sn2S2 , 2009 .

[34]  D. Orobengoa,et al.  The Bilbao Crystallographic Server , 2008 .

[35]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[36]  D. Vanderbilt,et al.  Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation , 2006, cond-mat/0608257.

[37]  David E. Tanner,et al.  ISODISPLACE: a web-based tool for exploring structural distortions , 2006 .

[38]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[39]  V. Pomjakushin,et al.  High-resolution powder diffractometer HRPT for thermal neutrons at SINQ , 2000 .

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[43]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[44]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[45]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[46]  A. Portis MAGNETIC RESONANCE AND RELAXATION , 1993 .

[47]  P. Fischer,et al.  A versatile double-axis multicounter neutron powder diffractometer , 1990 .

[48]  C. Felser,et al.  Prediction of quantum anomalous Hall effect from a magnetic Weyl semimetal , 2018 .

[49]  Ron Shamir,et al.  Theory and applications , 2004 .

[50]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[51]  Harold T. Stokes,et al.  Isotropy Subgroups Of The 230 Crystallographic Space Groups , 1989 .