Numerical and asymptotic aspects of parabolic cylinder functions

Several uniform asymptotics expansions of the Weber parabolic cylinder functions are considered, one group in terms of elementary functions, another group in terms of Airy functions. Starting point for the discussion are asymptotic expansions given earlier by F.W.J. Olver. Some of his results are modified to improve the asymptotic properties and to enlarge the intervals for using the expansions in numerical algorithms. Olver's results are obtained from the differential equation of the parabolic cylinder functions; we mention how modified expansions can be obtained from integral representations. Numerical tests are given for three expansions in terms of elementary functions. In this paper only real values of the parameters will be considered.

[1]  A. Fletcher,et al.  Tables of Weber Parabolic Cylinder Functions , 1957 .

[2]  N. Temme Laplace type integrals: transformation to standard form and uniform asymptotic expansions , 1983 .

[3]  J. C. P. Miller On the choice of standard solutions to Weber's equation , 1952 .

[4]  F. Olver Asymptotics and Special Functions , 1974 .

[5]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[6]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[7]  Roderick Wong,et al.  Asymptotic approximations of integrals , 1989, Classics in applied mathematics.

[8]  C. Chester,et al.  An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  A. Gil,et al.  Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments , 1998 .

[10]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[11]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[12]  Nico Μ. Τemme UNIFORM ASYMPTOTIC EXPANSIONS OF LAPLACE INTEGRALS , 1983 .

[13]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[14]  N. Temme Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .

[15]  William J. Thompson,et al.  Atlas for Computing Mathematical Functions: An Illustrated Guide for Practitioners with Programs in Fortran 90 and Mathematica , 1997 .

[16]  E. H. Newman,et al.  Numerical evaluation of parabolic cylinder functions , 1989 .

[17]  F. W. J. Olver,et al.  Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders , 1959 .

[18]  Walter Gautschi,et al.  NUMERICAL EVALUATION OF SPECIAL FUNCTIONS , 2001 .

[19]  Gerhard Taubmann Parabolic cylinder functions U(n, x) for natural n and positive x , 1992 .

[20]  Jian-Ming Jin,et al.  Computation of special functions , 1996 .

[21]  Louis Baker,et al.  C mathematical function handbook , 1991 .

[22]  Nico M. Temme Uniform asymptotic expansions of Laplace integrals , 1982 .

[23]  Stephen Wolfram,et al.  The Mathematica book (3rd ed.) , 1996 .

[24]  F. Olver,et al.  INTRODUCTION TO SPECIAL FUNCTIONS , 1974 .

[25]  H. Buchholz The Confluent Hypergeometric Function , 2021, A Course of Modern Analysis.

[26]  Ueber die Integration der partiellen Differentialgleichung: $$\frac{{\partial ^2 u}}{{\partial x^2 }} + \frac{{\partial ^2 u}}{{\partial y^2 }} + k^2 u = 0.$$ , 1869 .