A circuit-level perspective of the optimum gate oxide thickness

A performance constrained minimum power-area optimization is introduced to project the physical gate oxide thickness (t/sub ox/) scaling limit from a circuit-level perspective. The circuit optimization is based on the recent physical alpha-power law MOSFET model that enables predictions of CMOS circuit performance for future generations of technology. The model is utilized to derive an equation for propagation delay including the transition time effect. A physical compact gate-tunneling current model is also derived to analyze ultrathin oxide layers. Results indicate that the gate-tunneling power is substantially less (<5%) than the drain-to-source leakage power at the oxide thickness required for optimum CMOS logic circuit performance. As t/sub ox/ is scaled below 3.0 nm, the MOSFET performance improvement resulting from t/sub ox/ scaling diminishes due to an increasing effect of the polysilicon gate depletion depth on the electrical effective oxide thickness. The gate-tunneling power, however, remains exponentially dependent on t/sub ox/, thus resulting in an optimal value of t/sub ox/ where the gate-tunneling power is negligible in comparison to the drain-to-source leakage power. The scaling limit of t/sub ox/ is projected as 2.2, 1.9, and 1.4 nm for the 180, 150, and 100 nm technology generations, respectively.

[1]  R. Holm The Electric Tunnel Effect across Thin Insulator Films in Contacts , 1951 .

[2]  W. Shockley,et al.  A Unipolar "Field-Effect" Transistor , 1952, Proceedings of the IRE.

[3]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[4]  Gordon E. Moore,et al.  Progress in digital integrated electronics , 1975 .

[5]  B. T. Murphy,et al.  Unified field-effect transistor theory including velocity saturation , 1980 .

[6]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[7]  Kjell O. Jeppson,et al.  CMOS Circuit Speed and Buffer Optimization , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  S. L. Garverick,et al.  A simple model for scaled MOS transistors that includes field-dependent mobility , 1987 .

[9]  D. A. Bell,et al.  0.5 micron CMOS for high performance at 3.3 V , 1988, Technical Digest., International Electron Devices Meeting.

[10]  A. R. Newton,et al.  Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas , 1990 .

[11]  Takayasu Sakurai,et al.  Delay analysis of series-connected MOSFET circuits , 1991 .

[12]  Anantha P. Chandrakasan,et al.  Low-power CMOS digital design , 1992 .

[13]  James D. Meindl,et al.  Opportunities for Scaling FET's for Gigascale Integration (GSI) , 1993, ESSDERC '93: 23rd European solid State Device Research Conference.

[14]  Richard Green,et al.  A high performance 0.35 /spl mu/m logic technology for 3.3 V and 2.5 V operation , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[15]  James D. Meindl,et al.  Low power microelectronics: retrospect and prospect , 1995, Proc. IEEE.

[16]  M. Heyns,et al.  Determination of tunnelling parameters in ultra-thin oxide layer poly-Si/SiO2/Si structures , 1995 .

[17]  S. Tiwari,et al.  Self‐consistent modeling of accumulation layers and tunneling currents through very thin oxides , 1996 .

[18]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[19]  Y. Taur,et al.  Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's , 1997, IEEE Electron Device Letters.

[20]  K. Evans-Lutterodt,et al.  Ultra-thin, 1.0-3.0 nm, gate oxides for high performance sub-100 nm technology , 1998, 1998 Symposium on VLSI Technology Digest of Technical Papers (Cat. No.98CH36216).

[21]  Jeffrey A. Davis,et al.  A stochastic wire-length distribution for gigascale integration (GSI). II. Applications to clock frequency, power dissipation, and chip size estimation , 1998 .

[22]  James D. Meindl,et al.  A generic system simulator with novel on-chip cache and throughput models for gigascale integration , 1998 .

[23]  D. Frank,et al.  25 nm CMOS design considerations , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[24]  Azeez J. Bhavnagarwala,et al.  Minimum supply voltage for bulk Si CMOS GSI , 1998, Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.98TH8379).

[25]  James D. Meindl,et al.  A LOW POWER TRANSREGIONAL MOSFET MODEL CMOS GIGASCALE INTEGRATION (GSI) * FOR COMPLETE POWER-DELAY ANALYSIS OF , 1998 .

[26]  Chenming Hu,et al.  Gate engineering for deep-submicron CMOS transistors , 1998 .

[27]  Eric M. Vogel,et al.  Modeled tunnel currents for high dielectric constant dielectrics , 1998 .

[28]  S. Thompson MOS Scaling: Transistor Challenges for the 21st Century , 1998 .

[29]  Towards a Compact Model for MOSFETs with Direct Tunneling Gate Dielectrics , 1999, 29th European Solid-State Device Research Conference.

[30]  James D. Meindl,et al.  A physical alpha-power law MOSFET model , 1999 .

[31]  J. Wortman,et al.  Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices , 1999 .

[32]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[33]  Jung-Suk Goo,et al.  Direct tunneling current model for circuit simulation , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[34]  G. Dewey,et al.  30 nm physical gate length CMOS transistors with 1.0 ps n-MOS and 1.7 ps p-MOS gate delays , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[35]  Shekhar Borkar,et al.  Obeying Moore's law beyond 0.18 micron [microprocessor design] , 2000, Proceedings of 13th Annual IEEE International ASIC/SOC Conference (Cat. No.00TH8541).

[36]  J. Wortman,et al.  A comparative study of gate direct tunneling and drain leakage currents in n-MOSFET's with sub-2 nm gate oxides , 2000 .

[37]  Keith A. Bowman,et al.  A minimum total power methodology for projecting limits on CMOS GSI , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[38]  Mong-Song Liang,et al.  A physical model for hole direct tunneling current in p/sup +/ poly-gate pMOSFETs with ultrathin gate oxides , 2000 .

[39]  Lihui Wang,et al.  Oxide Thickness Scaling Limit for Optimum CMOS Logic Circuit Performance , 2000, 30th European Solid-State Device Research Conference.