An extensible simulation environment and movement metrics for testing walking behavior in agent-based models

Abstract Human movement is a significant ingredient of many social, environmental, and technical systems, yet the importance of movement is often discounted in considering systems’ complexity. Movement is commonly abstracted in agent-based modeling (which is perhaps the methodological vehicle for modeling complex systems), despite the influence of movement upon information exchange and adaptation in a system. In particular, agent-based models of urban pedestrians often treat movement in proxy form at the expense of faithfully treating movement behavior with realistic agency. There exists little consensus about which method is appropriate for representing movement in agent-based schemes. In this paper, we examine popularly-used methods to drive movement in agent-based models, first by introducing a methodology that can flexibly handle many representations of movement at many different scales and second, introducing a suite of tools to benchmark agent movement between models and against real-world trajectory data. We find that most popular movement schemes do a relatively poor job of representing movement, but that some schemes may well be “good enough” for some applications. We also discuss potential avenues for improving the representation of movement in agent-based frameworks.

[1]  A. Penn Space Syntax And Spatial Cognition , 2003 .

[2]  Studying spatial effects on human mobility patterns using agent-based simulations , 2009 .

[3]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[4]  Alan Penn,et al.  Encoding Natural Movement as an Agent-Based System: An Investigation into Human Pedestrian Behaviour in the Built Environment , 2002 .

[5]  F. Schweitzer Brownian Agents and Active Particles , 2003, Springer Series in Synergetics.

[6]  G. Hess Disease in Metapopulation Models: Implications for Conservation , 1996 .

[7]  Tommy Gärling,et al.  Distance Minimization in Downtown Pedestrian Shopping , 1988 .

[8]  Jake Pauls,et al.  The movement of people in buildings and design solutions for means of egress , 1984 .

[9]  Tony White,et al.  Macroscopic effects of microscopic forces between agents in crowd models , 2007 .

[10]  Mark H. Overmars,et al.  High quality navigation in computer games , 2007, Sci. Comput. Program..

[11]  L. F. Henderson,et al.  The Statistics of Crowd Fluids , 1971, Nature.

[12]  Ranxiao Frances Wang,et al.  Where we Go With a Little Good Information , 1999 .

[13]  Victor J. Blue,et al.  Cellular automata microsimulation for modeling bi-directional pedestrian walkways , 2001 .

[14]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[15]  Glenn Reinman,et al.  SteerBench: a benchmark suite for evaluating steering behaviors , 2009, Comput. Animat. Virtual Worlds.

[16]  A. Mawson Understanding Mass Panic and Other Collective Responses to Threat and Disaster , 2005, Psychiatry.

[17]  D. Helbing,et al.  Self-Organization Phenomena in Pedestrian Crowds , 1998, cond-mat/9806152.

[18]  Robert Weibel,et al.  Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects , 2009, Comput. Environ. Urban Syst..

[19]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[20]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[21]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[22]  H. Eugene Stanley,et al.  Non-equilibrium physics: Freezing by heating , 2000, Nature.

[23]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[24]  Serge P. Hoogendoorn,et al.  Gas-Kinetic Modeling and Simulation of Pedestrian Flows , 2000 .

[25]  Takeshi Sakuma,et al.  Psychological model for animating crowded pedestrians , 2005, Comput. Animat. Virtual Worlds.

[26]  D. Cummings,et al.  Strategies for mitigating an influenza pandemic , 2006, Nature.

[27]  I. Farkas,et al.  Social behaviour: Mexican waves in an excitable medium , 2002, Nature.

[28]  Dirk Helbing,et al.  Crowd behaves as excitable media during Mexican wave , 2002 .

[29]  Qingpeng Zhang Simulated Annealing and Crowd Dynamics Approaches for Intelligent Control , 2009, ISNN.

[30]  Michael Batty,et al.  Modelling and prediction in a complex world , 2005 .

[31]  Andrew Hudson-Smith,et al.  Agent Street: An Environment for Exploring Agent-Based Models in Second Life , 2009, J. Artif. Soc. Soc. Simul..

[32]  Dirk Helbing A Fluid-Dynamic Model for the Movement of Pedestrians , 1992, Complex Syst..

[33]  Jon M. Kerridge,et al.  PEDFLOW: Development of an Autonomous Agent Model of Pedestrian Flow , 2001 .

[34]  J. Foltête,et al.  Urban layout, landscape features and pedestrian usage , 2007 .

[35]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[36]  T. Schelling Models of Segregation , 1969 .

[37]  Dinesh Manocha,et al.  PLEdestrians: a least-effort approach to crowd simulation , 2010, SCA '10.

[38]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  K. Kitazawa,et al.  Pedestrian Vision and Collision Avoidance Behavior: Investigation of the Information Process Space of Pedestrians Using an Eye Tracker , 2010 .

[40]  R. Golledge Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes , 2010 .

[41]  M. Schreckenberg,et al.  Microscopic Simulation of Pedestrian Crowd Motion , 2002 .

[42]  John Bohannon Directing the Herd: Crowds and the Science of Evacuation , 2005, Science.

[43]  B. Hillier,et al.  The Social Logic of Space , 1984 .

[44]  Dinesh Manocha,et al.  Directing Crowd Simulations Using Navigation Fields , 2011, IEEE Transactions on Visualization and Computer Graphics.

[45]  Igor Mezic,et al.  Agent-based modeling of drinking behavior: a preliminary model and potential applications to theory and practice. , 2006, American journal of public health.

[46]  Dirk Helbing,et al.  From Crowd Dynamics to Crowd Safety: a Video-Based Analysis , 2008, Adv. Complex Syst..

[47]  Michael Batty,et al.  Agent-based pedestrian modelling , 2003 .

[48]  William A. V. Clark,et al.  Understanding the social context of the Schelling segregation model , 2008, Proceedings of the National Academy of Sciences.

[49]  A. Birenbaum,et al.  People in places : the sociology of the familiar , 1973 .

[50]  Noble Jv,et al.  Geographic and temporal development of plagues , 1974 .

[51]  John Watkinson An Introduction to Digital Audio , 1994 .

[52]  Paul M. Torrens,et al.  Spatial and temporal analysis of pedestrian egress behavior and efficiency , 2007, GIS.

[53]  J. Noble,et al.  Geographic and temporal development of plagues , 1974, Nature.

[54]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[55]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[56]  Dani Lischinski,et al.  Crowds by Example , 2007, Comput. Graph. Forum.

[57]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[58]  Vilis O Nams,et al.  Improving Accuracy and Precision in Estimating Fractal Dimension of Animal movement paths , 2006, Acta biotheoretica.

[59]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[60]  J. M. Sakoda The checkerboard model of social interaction , 1971 .

[61]  O. Bjørnstad,et al.  Travelling waves and spatial hierarchies in measles epidemics , 2001, Nature.

[62]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[63]  M. Batty,et al.  Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival , 2003 .

[64]  Joshua M Epstein,et al.  Modeling civil violence: An agent-based computational approach , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Daniel Thalmann,et al.  A vision-based approach to behavioural animation , 1990, Comput. Animat. Virtual Worlds.

[66]  Paul A. Braren,et al.  How We Avoid Collisions With Stationary and Moving Obstacles , 2004 .

[67]  Daniel Thalmann,et al.  Automatic derivation of curved human walking trajectories from synthetic vision , 1994, Proceedings of Computer Animation '94.

[68]  David O'Sullivan,et al.  “So Go Downtown”: Simulating Pedestrian Movement in Town Centres , 2001 .

[69]  W. Whyte The social life of small urban spaces , 1980 .

[70]  Frank Schweitzer,et al.  Active brownian particles: Artificial agents in physics , 1997 .

[71]  Leah Hoffmann,et al.  Crowd control , 2009, CACM.

[72]  Michael Batty,et al.  The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades , 2003, Int. J. Geogr. Inf. Sci..

[73]  R. Eggo,et al.  Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States , 2010, Journal of The Royal Society Interface.

[74]  J. Brickmann B. Mandelbrot: The Fractal Geometry of Nature, Freeman and Co., San Francisco 1982. 460 Seiten, Preis: £ 22,75. , 1985 .

[75]  John Zacharias,et al.  Pedestrian Behavior Pedestrian Behavior and Perception in Urban Walking Environments , 2001 .

[76]  P G Gipps,et al.  A micro simulation model for pedestrian flows , 1985 .

[77]  Michael Batty,et al.  Advanced Spatial Analysis: The CASA Book of GIS , 2003 .

[78]  Norman I. Badler,et al.  ACUMEN: amplifying control and understanding of multiple entities , 2002, AAMAS '02.

[79]  R. Hughes The flow of human crowds , 2003 .

[80]  Serge P. Hoogendoorn,et al.  Pedestrian Behavior at Bottlenecks , 2005, Transp. Sci..

[81]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[82]  Martin Raubal,et al.  Comparing the Complexity of Wayfinding Tasks in Built Environments , 1998 .

[83]  Dirk Helbing,et al.  Self-Organizing Pedestrian Movement , 2001 .

[84]  Luca Bruno,et al.  Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges , 2007, Math. Comput. Model..

[85]  J E Cutting,et al.  Wayfinding, displacements, and mental maps: velocity fields are not typically used to determine one's aimpoint. , 1995, Journal of experimental psychology. Human perception and performance.

[86]  Adrien Treuille,et al.  Continuum crowds , 2006, SIGGRAPH 2006.

[87]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[88]  Bin Jiang,et al.  Characterizing the human mobility pattern in a large street network. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  Gaurav Bhatnagar,et al.  Introduction to Digital Audio , 2004 .

[90]  Paul M. Torrens,et al.  Geographic Automata Systems , 2005, Int. J. Geogr. Inf. Sci..

[91]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.

[92]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[93]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[94]  Céline Loscos,et al.  Visualizing Crowds in Real‐Time , 2002, Comput. Graph. Forum.

[95]  Michael Schreckenberg,et al.  Pedestrian and evacuation dynamics , 2002 .

[96]  James M. Dabbs join,et al.  Beauty is Power: The Use of Space on the Sidewalk , 1975 .

[97]  Dimitris N. Metaxas,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Group Behavior from Video: a Data-driven Approach to Crowd Simulation , 2022 .

[98]  Soraia Raupp Musse,et al.  A Model of Human Crowd Behavior : Group Inter-Relationship and Collision Detection Analysis , 1997, Computer Animation and Simulation.

[99]  Vilis O. Nams,et al.  The VFractal: a new estimator for fractal dimension of animal movement paths , 1996, Landscape Ecology.

[100]  Joshua M. Epstein,et al.  Coupled Contagion Dynamics of Fear and Disease: Mathematical and Computational Explorations , 2007, PloS one.

[101]  John J. Fruin,et al.  Pedestrian planning and design , 1971 .

[102]  Frank Schweitzer,et al.  Self-Organization of Complex Structures: From Individual to Collective Dynamics - Some Introductory , 1997 .

[103]  Scott A. Bridwell,et al.  A Field-Based Theory for Time Geography , 2009 .

[104]  Carl J. Couch,et al.  Collective Behavior: An Examination of Some Stereotypes , 1968 .

[105]  T. Nagatani,et al.  Statistical characteristics of evacuation without visibility in random walk model , 2004 .

[106]  Dirk Helbing,et al.  Experimental study of the behavioural mechanisms underlying self-organization in human crowds , 2009, Proceedings of the Royal Society B: Biological Sciences.