An enhanced pathfinder algorithm for engineering optimization problems

The pathfinder algorithm (PFA) is a new population-based optimizer, it divides the search agents of the algorithm into leaders and followers, imitating the leadership level of the group movement to find the best food area or prey. In PFA, followers follow the new position according to the position of the leader and their own consciousness makes the algorithm easy to fall into local optimum. To overcome this shortcoming, the following stage is complicated in this paper, and the acceptance operator, the exchange operator and the mutation mechanism are introduced into the algorithm. To further balance the mining ability and exploration ability of the algorithm, the article regards the leader as a guide and introduces a guide mechanism. To verify the performance of the improved algorithm, it is applied to nine real-life engineering case problems. The simulation results of the real-life engineering design problems exhibit the superiority of the improved PFA (IMPFA) algorithm in solving challenging problems with constrained and unknown search spaces when compared to the basic PFA algorithm or other available solutions.

[1]  Mohamed Cheriet,et al.  Curved Space Optimization: A Random Search based on General Relativity Theory , 2012, ArXiv.

[2]  Kusum Deep,et al.  Sine cosine grey wolf optimizer to solve engineering design problems , 2020, Engineering with Computers.

[3]  Pritpal Singh,et al.  A Fuzzy-LP Approach in Time Series Forecasting , 2017, PReMI.

[4]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[5]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[6]  Enrique Alba,et al.  The exploration/exploitation tradeoff in dynamic cellular genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[7]  Samareh MoosaviSeyyed Hamid,et al.  Satin bowerbird optimizer , 2017 .

[8]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[9]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[10]  Marco Montemurro,et al.  Design of the elastic properties of laminates with a minimum number of plies , 2012, Mechanics of Composite Materials.

[11]  A. L. Sangal,et al.  Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization , 2020, Eng. Appl. Artif. Intell..

[12]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[13]  Vijay Kumar,et al.  Emperor penguin optimizer: A bio-inspired algorithm for engineering problems , 2018, Knowl. Based Syst..

[14]  Wei-quan Yao,et al.  Genetic Quantum Particle Swarm Optimization Algorithm for Solving Traveling Salesman Problems , 2014 .

[15]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[16]  Pham Huu Sach Solution Existence in Bifunction-Set Optimization , 2018, J. Optim. Theory Appl..

[17]  Jasbir S. Arora,et al.  4 – Optimum Design Concepts , 2004 .

[18]  Vikram Kumar Kamboj,et al.  Optimal generation scheduling and dispatch of thermal generating units considering impact of wind penetration using hGWO-RES algorithm , 2018, Applied Intelligence.

[19]  Huiling Chen,et al.  Orthogonally-designed adapted grasshopper optimization: A comprehensive analysis , 2020, Expert Syst. Appl..

[20]  Vikram Kumar Kamboj,et al.  An intensify Harris Hawks optimizer for numerical and engineering optimization problems , 2020, Appl. Soft Comput..

[21]  Arthur I. Cohen,et al.  A Branch-and-Bound Algorithm for Unit Commitment , 1983, IEEE Transactions on Power Apparatus and Systems.

[22]  Jianzhou Wang,et al.  Container throughput forecasting using a novel hybrid learning method with error correction strategy , 2019, Knowl. Based Syst..

[23]  Erwie Zahara,et al.  Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems , 2009, Expert Syst. Appl..

[24]  Rajesh Kumar Chandrawat,et al.  An Analysis of Modeling and Optimization Production Cost Through Fuzzy Linear Programming Problem with Symmetric and Right Angle Triangular Fuzzy Number , 2016, SocProS.

[25]  Ardeshir Bahreininejad,et al.  Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems , 2012 .

[26]  Yongquan Zhou,et al.  Enhanced Metaheuristic Optimization: Wind-Driven Flower Pollination Algorithm , 2019, IEEE Access.

[27]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[28]  Liang Gao,et al.  Parallel chaotic local search enhanced harmony search algorithm for engineering design optimization , 2019, J. Intell. Manuf..

[29]  Victor O. K. Li,et al.  A social spider algorithm for global optimization , 2015, Appl. Soft Comput..

[30]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[31]  Yohann Audoux,et al.  Non-Uniform Rational Basis Spline hyper-surfaces for metamodelling , 2020, Computer Methods in Applied Mechanics and Engineering.

[32]  Yong Wang,et al.  Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization , 2010, Appl. Soft Comput..

[33]  Yongquan Zhou,et al.  Flower Pollination Algorithm with Dimension by Dimension Improvement , 2014 .

[34]  Aboul Ella Hassanien,et al.  A hybrid SA-MFO algorithm for function optimization and engineering design problems , 2018 .

[35]  G. Vanderplaats,et al.  Survey of Discrete Variable Optimization for Structural Design , 1995 .

[36]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[37]  Marco Montemurro,et al.  Optimal design of advanced engineering modular systems through a new genetic approach , 2012 .

[38]  Mustafa Servet Kiran,et al.  TSA: Tree-seed algorithm for continuous optimization , 2015, Expert Syst. Appl..

[39]  Ardeshir Bahreininejad,et al.  Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems , 2013, Appl. Soft Comput..

[40]  Richard A. Formato,et al.  CENTRAL FORCE OPTIMIZATION: A NEW META-HEURISTIC WITH APPLICATIONS IN APPLIED ELECTROMAGNETICS , 2007 .

[41]  Yongquan Zhou,et al.  A Complex Encoding Flower Pollination Algorithm for Global Numerical Optimization , 2016, ICIC.

[42]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[43]  S. Virmani,et al.  Implementation of a Lagrangian Relaxation Based Unit Commitment Problem , 1989, IEEE Power Engineering Review.

[44]  Angela Vincenti,et al.  BIANCA: a genetic algorithm to solve hard combinatorial optimisation problems in engineering , 2010, J. Glob. Optim..

[45]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[46]  A. Czirók,et al.  Collective Motion , 1999, physics/9902023.

[47]  Hae Chang Gea,et al.  STRUCTURAL OPTIMIZATION USING A NEW LOCAL APPROXIMATION METHOD , 1996 .

[48]  Ali Kaveh,et al.  Water Evaporation Optimization , 2016 .

[49]  Seyed Mohammad Mirjalili,et al.  Multi-Verse Optimizer: a nature-inspired algorithm for global optimization , 2015, Neural Computing and Applications.

[50]  Yujun Zheng Water wave optimization: A new nature-inspired metaheuristic , 2015, Comput. Oper. Res..

[51]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[52]  Marco Montemurro,et al.  A Two-Level Procedure for the Global Optimum Design of Composite Modular Structures—Application to the Design of an Aircraft Wing , 2012, J. Optim. Theory Appl..

[53]  Wenjian Luo,et al.  Differential evolution with dynamic stochastic selection for constrained optimization , 2008, Inf. Sci..

[54]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[55]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[56]  Zhun Fan,et al.  Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique , 2009 .

[57]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[58]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[59]  Mitsuo Gen,et al.  Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation , 2008, Soft Comput..

[60]  H Nowacki,et al.  OPTIMIZATION IN PRE-CONTRACT SHIP DESIGN , 1973 .

[61]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[62]  Hamed Shah-Hosseini,et al.  Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation , 2011, Int. J. Comput. Sci. Eng..

[63]  C. A. Coello Coello,et al.  Multiple trial vectors in differential evolution for engineering design , 2007 .

[64]  Bidyadhar Subudhi,et al.  A New MPPT Design Using Grey Wolf Optimization Technique for Photovoltaic System Under Partial Shading Conditions , 2016, IEEE Transactions on Sustainable Energy.

[65]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[66]  Andries Petrus Engelbrecht,et al.  Measuring exploration/exploitation in particle swarms using swarm diversity , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[67]  V. Mukherjee,et al.  Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem , 2016, Appl. Soft Comput..

[68]  Omid Bozorg-Haddad,et al.  Moth-Flame Optimization (MFO) Algorithm , 2018 .

[69]  Yanhua Liu,et al.  QSSA: Quantum Evolutionary Salp Swarm Algorithm for Mechanical Design , 2019, IEEE Access.

[70]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[71]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[72]  Nurettin Cetinkaya,et al.  A new meta-heuristic optimizer: Pathfinder algorithm , 2019, Appl. Soft Comput..

[73]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[74]  Carlos A. Coello Coello,et al.  Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms , 2005, MICAI.

[75]  Ling Wang,et al.  A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization , 2007, Appl. Math. Comput..

[76]  T. Vicsek,et al.  Collective Motion , 1999, physics/9902023.

[77]  L. Mech,et al.  Leadership behavior in relation to dominance and reproductive status in gray wolves, Canis lupus , 2002 .

[78]  Phyllis C. Lee,et al.  Wild female African elephants (Loxodonta africana) exhibit personality traits of leadership and social integration. , 2012, Journal of comparative psychology.

[79]  Vahid Khatibi Bardsiri,et al.  Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation , 2017, Eng. Appl. Artif. Intell..

[80]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[81]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[82]  Carlos García-Martínez,et al.  Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report , 2010, Comput. Oper. Res..

[83]  Gülay Tezel,et al.  Artificial algae algorithm (AAA) for nonlinear global optimization , 2015, Appl. Soft Comput..

[84]  A. Kaveh,et al.  A new optimization method: Dolphin echolocation , 2013, Adv. Eng. Softw..

[85]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[86]  Vimal Savsani,et al.  Passing vehicle search (PVS): A novel metaheuristic algorithm , 2016 .

[87]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[88]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[89]  Jeng-Shyang Pan,et al.  Cat swarm optimization , 2006 .

[90]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[91]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[92]  Hossam Faris,et al.  Harris hawks optimization: Algorithm and applications , 2019, Future Gener. Comput. Syst..

[93]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[94]  Kalyanmoy Deb,et al.  Mechanical Component Design for Multiple Objectives Using Elitist Non-dominated Sorting GA , 2000, PPSN.

[95]  Fariborz Jolai,et al.  Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm , 2016, J. Comput. Des. Eng..

[96]  Marco Montemurro,et al.  The Automatic Dynamic Penalisation method (ADP) for handling constraints with genetic algorithms , 2013 .

[97]  Xiaodong Wu,et al.  Small-World Optimization Algorithm for Function Optimization , 2006, ICNC.

[98]  Marco Montemurro,et al.  A General Hybrid Optimization Strategy for Curve Fitting in the Non-uniform Rational Basis Spline Framework , 2017, Journal of Optimization Theory and Applications.

[99]  N. Siddique,et al.  Central Force Optimization , 2017 .

[100]  Bilal Alatas,et al.  ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization , 2011, Expert Syst. Appl..

[101]  Marco Montemurro,et al.  A Two-Level Procedure for the Global Optimum Design of Composite Modular Structures—Application to the Design of an Aircraft Wing , 2012, J. Optim. Theory Appl..

[102]  Vassilios Petridis,et al.  Varying Fitness Functions in Genetic Algorithms: Studying the Rate of Increase of the Dynamic Penalty Terms , 1998, PPSN.

[103]  Liangjin Gui,et al.  Topology and Sizing Optimization of Truss Structures Using Adaptive Genetic Algorithm with Node Matrix Encoding , 2009, 2009 Fifth International Conference on Natural Computation.

[104]  Andrew Lewis,et al.  Grasshopper Optimisation Algorithm: Theory and application , 2017, Adv. Eng. Softw..

[105]  S. Mirjalili,et al.  A new hybrid PSOGSA algorithm for function optimization , 2010, 2010 International Conference on Computer and Information Application.

[106]  Yohann Audoux,et al.  A Metamodel Based on Non-Uniform Rational Basis Spline Hyper-Surfaces for Optimisation of Composite Structures , 2020 .

[107]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[108]  Yongquan Zhou,et al.  Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems , 2020, Engineering with Computers.

[109]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[110]  Frank Hoffmeister,et al.  Problem-Independent Handling of Constraints by Use of Metric Penalty Functions , 1996, Evolutionary Programming.

[111]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[112]  James C. Bean,et al.  A Genetic Algorithm for the Multiple-Choice Integer Program , 1997, Oper. Res..

[113]  Carlos A. Coello Coello,et al.  Modified Differential Evolution for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[114]  Yongquan Zhou,et al.  Lévy flight trajectory-based whale optimization algorithm for engineering optimization , 2018, Engineering Computations.

[115]  ZhengYu-Jun Water wave optimization , 2015 .

[116]  Bence Ferdinandy,et al.  Collective motion of groups of self-propelled particles following interacting leaders , 2016, 1609.03212.

[117]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .