Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization

We report the synthesis of self-organized nanoporous iron (III) oxide (haematite) via potentiostatic anodization of iron foil. Dependent upon the applied potential and electrolytic composition, the pore diameters range from 50 to 250 nm with a pore depth of approximately 500 nm. We examine the effect of electrolytic composition, anodization bath temperature and applied potential on the dimensions of the as-synthesized nanoporous structure. Crystallization and structural retention of the synthesized structure are achieved upon annealing the initial amorphous sample in a nitrogen atmosphere at 400 °C. The crystallized nanoporous film, having a 2.2 eV bandgap, exhibited a net photocurrent density of 0.51 mA cm−2 in 0.5 M H2O2+1 M NaOH at 0.6 V versus Ag/AgCl under simulated AM 1.5 sunlight. Factors limiting the photoresponse and strategies of improvement are discussed.

[1]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[2]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[3]  Craig A. Grimes,et al.  Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays , 2006 .

[4]  A. Hagfeldt,et al.  Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite , 2000 .

[5]  G. C. Wood,et al.  The morphology and mechanism of formation of porous anodic films on aluminium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[7]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[8]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .

[9]  C. Grimes,et al.  Controlled Molecular Release Using Nanoporous Alumina Capsules , 2003 .

[10]  L. Halaoui,et al.  Electrocatalytic Activity at Surface-Modified Pt Nanoparticles Assembled in Polyelectrolyte , 2006 .

[11]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[12]  Zhong Lin Wang,et al.  Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. , 2005, The journal of physical chemistry. B.

[13]  Craig A Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[14]  Patrik Schmuki,et al.  Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization , 2005 .

[15]  Yihong Wu,et al.  Synthesis of Iron Oxide Nanostructures by Annealing Electrodeposited Fe-Based Films , 2005 .

[16]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[17]  Michael Grätzel,et al.  Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis , 2005 .

[18]  J. Kennedy,et al.  Photooxidation of Water at α ‐ Fe2 O 3 Electrodes , 1978 .

[19]  R. Karlinsey Preparation of self-organized niobium oxide microstructures via potentiostatic anodization , 2005 .

[20]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[21]  J. Moser,et al.  Photoelectrochemical Studies on Nanocrystalline Hematite Films , 1994 .

[22]  Craig A. Grimes,et al.  Fabrication of nanoporous tungsten oxide by galvanostatic anodization , 2003 .

[23]  W. Smyrl,et al.  Zirconium Oxide Nanotubes Synthesized via Direct Electrochemical Anodization , 2005 .

[24]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[25]  K. G. Ong,et al.  A Transcutaneous Hydrogen Sensor: From Design to Application , 2006 .

[26]  Michael Grätzel,et al.  Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. , 2006, Journal of the American Chemical Society.

[27]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .