Sampled Gromov Wasserstein

[1]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[2]  Nicolas Courty,et al.  CO-Optimal Transport , 2020, NeurIPS.

[3]  Hisashi Kashima,et al.  Fast and Robust Comparison of Probability Measures in Heterogeneous Spaces , 2020, ArXiv.

[4]  Marco Cuturi,et al.  Differentiable Ranks and Sorting using Optimal Transport , 2019, 1905.11885.

[5]  Nicolas Courty,et al.  Sliced Gromov-Wasserstein , 2019, NeurIPS.

[6]  Lawrence Carin,et al.  Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching , 2019, NeurIPS.

[7]  Stefanie Jegelka,et al.  Learning Generative Models across Incomparable Spaces , 2019, ICML.

[8]  S. Caracciolo,et al.  The Dyck bound in the concave 1-dimensional random assignment model , 2019, Journal of Physics A: Mathematical and Theoretical.

[9]  Marco Cuturi,et al.  Subspace Robust Wasserstein distances , 2019, ICML.

[10]  Hongyuan Zha,et al.  Gromov-Wasserstein Learning for Graph Matching and Node Embedding , 2019, ICML.

[11]  L. Freeman,et al.  Social Networks , 2022, Handbook of Graph Drawing and Visualization.

[12]  Nicolas Courty,et al.  Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties , 2018, Algorithms.

[13]  Gabriel Peyré,et al.  Sample Complexity of Sinkhorn Divergences , 2018, AISTATS.

[14]  Samir Chowdhury,et al.  The Gromov-Wasserstein distance between networks and stable network invariants , 2018, Information and Inference: A Journal of the IMA.

[15]  Wen Li,et al.  Semi-Supervised Optimal Transport for Heterogeneous Domain Adaptation , 2018, IJCAI.

[16]  Nicolas Courty,et al.  Optimal Transport for structured data with application on graphs , 2018, ICML.

[17]  Nicolas Courty,et al.  Optimal Transport for structured data , 2018, ArXiv.

[18]  Hongyuan Zha,et al.  A Fast Proximal Point Method for Computing Exact Wasserstein Distance , 2018, UAI.

[19]  Vivien Seguy,et al.  Smooth and Sparse Optimal Transport , 2017, AISTATS.

[20]  Vladimir G. Kim,et al.  GWCNN: A Metric Alignment Layer for Deep Shape Analysis , 2017, Comput. Graph. Forum.

[21]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[22]  Prabhu Babu,et al.  Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning , 2017, IEEE Transactions on Signal Processing.

[23]  Alexander J. Smola,et al.  Stochastic Frank-Wolfe methods for nonconvex optimization , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[24]  Vladimir G. Kim,et al.  Entropic metric alignment for correspondence problems , 2016, ACM Trans. Graph..

[25]  Gabriel Peyré,et al.  Gromov-Wasserstein Averaging of Kernel and Distance Matrices , 2016, ICML.

[26]  Nicolas Courty,et al.  Domain Adaptation with Regularized Optimal Transport , 2014, ECML/PKDD.

[27]  Roman Garnett,et al.  Graph Kernels for Object Category Prediction in Task-Dependent Robot Grasping , 2013, MLG 2013.

[28]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[29]  Julien Rabin,et al.  Wasserstein regularization of imaging problem , 2011, 2011 18th IEEE International Conference on Image Processing.

[30]  Wolfgang Heidrich,et al.  Displacement interpolation using Lagrangian mass transport , 2011, ACM Trans. Graph..

[31]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[32]  Julie Delon,et al.  Local Matching Indicators for Transport Problems with Concave Costs , 2011, SIAM J. Discret. Math..

[33]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[34]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[35]  Facundo Mémoli,et al.  Spectral Gromov-Wasserstein distances for shape matching , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[36]  C. Villani Optimal Transport: Old and New , 2008 .

[37]  Ulrik Brandes,et al.  Experiments on Graph Clustering Algorithms , 2003, ESA.

[38]  Alan L. Yuille,et al.  Convergence Properties of the Softassign Quadratic Assignment Algorithm , 1999, Neural Computation.

[39]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[40]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[41]  Margaret H. Wright,et al.  Direct search methods: Once scorned, now respectable , 1996 .

[42]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[43]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[44]  A Fast Proximal Point Method for Computing Exact Wasserstein Distance – Appendix A More Analysis on IPOT , 2022 .

[45]  N. Mitra,et al.  Eurographics Symposium on Geometry Processing (2005) Robust Global Registration , 2022 .