Into the blue: AO science with MagAO in the visible

We review astronomical results in the visible (λ<1μm) with adaptive optics. Other than a brief period in the early 1990s, there has been little astronomical science done in the visible with AO until recently. The most productive visible AO system to date is our 6.5m Magellan telescope AO system (MagAO). MagAO is an advanced Adaptive Secondary system at the Magellan 6.5m in Chile. This secondary has 585 actuators with < 1 msec response times (0.7 ms typically). We use a pyramid wavefront sensor. The relatively small actuator pitch (~23 cm/subap) allows moderate Strehls to be obtained in the visible (0.63-1.05 microns). We use a CCD AO science camera called “VisAO”. On-sky long exposures (60s) achieve <30mas resolutions, 30% Strehls at 0.62 microns (r') with the VisAO camera in 0.5” seeing with bright R < 8 mag stars. These relatively high visible wavelength Strehls are made possible by our powerful combination of a next generation ASM and a Pyramid WFS with 378 controlled modes and 1000 Hz loop frequency. We'll review the key steps to having good performance in the visible and review the exciting new AO visible science opportunities and refereed publications in both broad-band (r,i,z,Y) and at Halpha for exoplanets, protoplanetary disks, young stars, and emission line jets. These examples highlight the power of visible AO to probe circumstellar regions/spatial resolutions that would otherwise require much larger diameter telescopes with classical infrared AO cameras.

[1]  Tiffany Meshkat,et al.  HD 106906 b: A PLANETARY-MASS COMPANION OUTSIDE A MASSIVE DEBRIS DISK , 2013, 1312.1265.

[2]  S. Esposito,et al.  High Resolution Hα Images of the Binary Low-mass Proplyd LV 1 with the Magellan AO System , 2013 .

[3]  C. Baranec,et al.  PALM-3000: EXOPLANET ADAPTIVE OPTICS FOR THE 5 m HALE TELESCOPE , 2013, 1309.1216.

[4]  Michael Wegner,et al.  1st AO4ELT conference , 2010 .

[5]  T. Fusco,et al.  Near-infrared adaptive optics dissection of the core of NGC 1068 with NAOS-CONICA , 2006 .

[6]  Laird M. Close,et al.  Mid-Infrared Imaging of the Post-AGB Star AC Herculis with the MMT Adaptive Optics System , 2003 .

[7]  S. Esposito,et al.  DIFFRACTION-LIMITED VISIBLE LIGHT IMAGES OF ORION TRAPEZIUM CLUSTER WITH THE MAGELLAN ADAPTIVE SECONDARY ADAPTIVE OPTICS SYSTEM (MagAO) , 2013, 1308.4155.

[8]  Gordon A. H. Walker,et al.  Speckle Noise and the Detection of Faint Companions , 1999 .

[9]  Suresh Sivanandam,et al.  THERMAL INFRARED MMTAO OBSERVATIONS OF THE HR 8799 PLANETARY SYSTEM , 2010, 1003.4986.

[10]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .

[11]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[12]  R. Briguglio,et al.  DISCOVERY OF Hα EMISSION FROM THE CLOSE COMPANION INSIDE THE GAP OF TRANSITIONAL DISK HD 142527 , 2014, 1401.1273.

[13]  Armando Riccardi,et al.  MAGELLAN ADAPTIVE OPTICS FIRST-LIGHT OBSERVATIONS OF THE EXOPLANET β PIC b. I. DIRECT IMAGING IN THE FAR-RED OPTICAL WITH MagAO+VisAO AND IN THE NEAR-IR WITH NICI, , 2014, 1403.0560.

[14]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[15]  C. Vérinaud,et al.  Modelling astronomical adaptive optics – I. The software package caos , 2005 .

[16]  Pravin Chordia,et al.  Rise of the machines: first year operations of the Robo-AO visible-light laser-adaptive optics instrument , 2013 .

[17]  Laird M. Close,et al.  An advanced atmospheric dispersion corrector: The Magellan visible AO camera , 2008, 1010.1299.

[18]  Michael C. Roggemann,et al.  Image reconstruction by means of wave-front sensor measurements in closed-loop adaptive-optics systems , 1993 .

[19]  M. Lloyd-Hart,et al.  Mid-Infrared Imaging of the Post-Asymptotic Giant Branch Star AC Herculis with the Multiple Mirror Telescope Adaptive Optics System , 2003 .

[20]  J. G. Robertson,et al.  GETTING LUCKY WITH ADAPTIVE OPTICS: FAST ADAPTIVE OPTICS IMAGE SELECTION IN THE VISIBLE WITH A LARGE TELESCOPE , 2008, 0805.1921.

[21]  Ian Lewis,et al.  Proceedings of the SPIE , 2012 .

[22]  Suresh Sivanandam,et al.  MMT/AO 5 μm IMAGING CONSTRAINTS ON THE EXISTENCE OF GIANT PLANETS ORBITING FOMALHAUT AT ∼13–40 AU , 2008, 0811.2443.

[23]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[24]  Henry G. Roe,et al.  Dissipation of Titan's south polar clouds , 2005 .

[25]  Robert Q. Fugate,et al.  Full Adaptive Optics Images of ADS 9731 and MU Cassiopeiae: Orbits and Masses , 1995 .

[26]  Laird M. Close,et al.  A dynamical calibration of the mass–luminosity relation at very low stellar masses and young ages , 2005, Nature.

[27]  Roberto Ragazzoni,et al.  Advancements in adaptive optics : 21-25 June 2004, Glasgow, Scotland, United Kingdom , 2004 .

[28]  Norbert Hubin,et al.  Adaptive Optics Systems II , 2010 .

[29]  Laird M. Close,et al.  A Reflective Gaussian Coronagraph for Extreme Adaptive Optics: Laboratory Performance , 2006 .

[30]  Armando Riccardi,et al.  The adaptive secondary mirror for the Large Binocular Telescope: optical acceptance test and preliminary on-sky commissioning results , 2010, Astronomical Telescopes + Instrumentation.

[31]  Christophe Dupuy,et al.  ESO adaptive optics facility progress and first laboratory test results , 2014, Astronomical Telescopes and Instrumentation.

[32]  Lorenzo Busoni,et al.  First light AO system for LBT: toward on-sky operation , 2006, SPIE Astronomical Telescopes + Instrumentation.

[33]  Frederick J. Vrba,et al.  Herbig Ae/Be Stars: Intermediate-Mass Stars Surrounded by Massive Circumstellar Accretion Disks , 1992 .

[34]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[35]  H. Maître,et al.  Estimation of the adaptive optics long-exposure point-spread function using control loop data , 1997 .

[36]  Gordon A. H. Walker,et al.  The Extrasolar Planet ∊ Eridani b: Orbit and Mass , 2006 .

[37]  R. Biasi,et al.  The adaptive secondary mirror for the Large Binocular Telescope: results of acceptance laboratory test , 2008, Astronomical Telescopes + Instrumentation.

[38]  Tyson Hare,et al.  The Magellan Telescope adaptive secondary AO system , 2008, Astronomical Telescopes + Instrumentation.

[39]  K. Cahoy,et al.  EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY , 2010, 1009.3071.

[40]  L. Close,et al.  The First Circumstellar Disk Imaged in Silhouette at Visible Wavelengths with Adaptive Optics: MagAO Imaging of Orion 218-354 , 2013, 1308.4147.

[41]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[42]  Christophe Verinaud,et al.  Performance of the first-light adaptive optics system of LBT by means of CAOS simulations , 2003, SPIE Astronomical Telescopes + Instrumentation.