Phase Reduction and Synchronization of Coupled Noisy Oscillators

We study the synchronization behavior of a noisy network in which each system is driven by two sources of state-dependent noise: (1) an intrinsic noise which is common among all systems and can be generated by the environment or any internal fluctuations, and (2) a coupling noise which is generated by interactions with other systems. After providing sufficient conditions that foster synchronization in networks of general noisy systems, we focus on weakly coupled networks of noisy oscillators and, using the firstand second-order phase response curves (PRCs), we derive a reduced order stochastic differential equation to describe the corresponding phase evolutions. Finally, we derive synchronization conditions based on the PRCs and illustrate the theoretical results on a couple of models.

[1]  B. Lindner,et al.  Phase descriptions of a multidimensional Ornstein-Uhlenbeck process. , 2019, Physical review. E.

[2]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[3]  Michele Bonnin,et al.  Amplitude and phase dynamics of noisy oscillators , 2015, Int. J. Circuit Theory Appl..

[4]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[5]  T. Björk Arbitrage Theory in Continuous Time , 2019 .

[6]  Philip Holmes,et al.  Minimal Models of Bursting Neurons: How Multiple Currents, Conductances, and Timescales Affect Bifurcation Diagrams , 2004, SIAM J. Appl. Dyn. Syst..

[7]  A. Demir,et al.  Phase noise in oscillators: a unifying theory and numerical methods for characterization , 2000 .

[8]  G. Giacomin,et al.  Small noise and long time phase diffusion in stochastic limit cycle oscillators , 2015, 1512.04436.

[9]  Zahra Aminzare,et al.  On Phase Reduction and Time Period of Noisy Oscillators , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[10]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[11]  A. Goldbeter Computational approaches to cellular rhythms , 2002, Nature.

[12]  Giovanni Russo,et al.  On Synchronization in Continuous-Time Networks of Nonlinear Nodes With State-Dependent and Degenerate Noise Diffusion , 2019, IEEE Transactions on Automatic Control.

[13]  Arkady Pikovsky,et al.  Effective phase dynamics of noise-induced oscillations in excitable systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  B. Ermentrout,et al.  Greater accuracy and broadened applicability of phase reduction using isostable coordinates , 2018, Journal of mathematical biology.

[15]  Jessica Fuerst,et al.  Stochastic Differential Equations And Applications , 2016 .

[16]  Hugo Daniel Macedo,et al.  Typing linear algebra: A biproduct-oriented approach , 2013, Sci. Comput. Program..

[17]  H. Robinson,et al.  Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. , 2007, Biophysical journal.

[18]  Kazuyuki Aihara,et al.  Synchronization of Firing in Cortical Fast-Spiking Interneurons at Gamma Frequencies: A Phase-Resetting Analysis , 2010, PLoS Comput. Biol..

[19]  Ali Hajimiri,et al.  A general theory of phase noise in electrical oscillators , 1998 .

[20]  M. Bonnin Phase oscillator model for noisy oscillators , 2017, 1905.03185.

[21]  A. Winfree Patterns of phase compromise in biological cycles , 1974 .

[22]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[23]  J. Teramae,et al.  Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. , 2004, Physical review letters.

[24]  Philip Holmes,et al.  A Minimal Model of a Central Pattern Generator and Motoneurons for Insect Locomotion , 2004, SIAM J. Appl. Dyn. Syst..

[25]  B. Lindner,et al.  Asymptotic phase for stochastic oscillators. , 2014, Physical review letters.

[26]  J. Guckenheimer,et al.  Isochrons and phaseless sets , 1975, Journal of mathematical biology.

[27]  A. M. Stanzhitskii Investigation of Invariant Sets of Itô Stochastic Systems with the Use of Lyapunov Functions , 2001 .

[28]  Giacomo Baggio,et al.  A Framework to Control Functional Connectivity in the Human Brain , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[29]  G Bard Ermentrout,et al.  Stochastic phase reduction for a general class of noisy limit cycle oscillators. , 2009, Physical review letters.

[30]  Jeff Moehlis,et al.  Improving the precision of noisy oscillators , 2014 .

[31]  Zahra Aminzare,et al.  Heterogeneous Inputs to Central Pattern Generators Can Shape Insect Gaits , 2019, SIAM J. Appl. Dyn. Syst..

[32]  Bard Ermentrout,et al.  The variance of phase-resetting curves , 2011, Journal of Computational Neuroscience.

[33]  Rodolphe Sepulchre,et al.  Sensitivity Analysis of Oscillator Models in the Space of Phase-Response Curves: Oscillators As Open Systems , 2012, IEEE Control Systems.

[34]  A. Pikovsky,et al.  Phase description of stochastic oscillations. , 2013, Physical review letters.

[35]  Paul C. Bressloff,et al.  A Variational Method for Analyzing Stochastic Limit Cycle Oscillators , 2017, SIAM J. Appl. Dyn. Syst..

[36]  Paul C. Bressloff,et al.  Phase Reduction of Stochastic Biochemical Oscillators , 2018, SIAM J. Appl. Dyn. Syst..

[37]  Michael A Schwemmer,et al.  Effects of moderate noise on a limit cycle oscillator: counterrotation and bistability. , 2014, Physical review letters.

[38]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[39]  Zahra Aminzare,et al.  Gait Transitions in a Phase Oscillator Model of an Insect Central Pattern Generator , 2017, SIAM J. Appl. Dyn. Syst..

[40]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[41]  Michael A. Schwemmer,et al.  The Theory of Weakly Coupled Oscillators , 2012 .

[42]  Robert Shorten,et al.  On common noise-induced synchronization in complex networks with state-dependent noise diffusion processes , 2018 .