Half-Filled Models: Lieb’s Theorems and the Origin of Antiferromagnetism and Ferrimagnetism

[1]  T. Miyao Stability of Ferromagnetism in Many-Electron Systems , 2017, Journal of Statistical Physics.

[2]  T. Ichinose,et al.  Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice , 2015, Science Advances.

[3]  G. Tian Lieb's Spin-Reflection-Positivity Method and Its Applications to Strongly Correlated Electron Systems , 2004 .

[4]  G. Tian Antiferromagnetic correlation in the half-filled strongly correlated electron models at nonzero temperature: A rigorous result , 2001 .

[5]  P. Fazekas,et al.  Lecture notes on electron correlation and magnetism , 1999 .

[6]  N. Datta,et al.  Effective Hamiltonians and Phase Diagrams for Tight-Binding Models , 1998, math-ph/9809007.

[7]  S. Shen STRONGLY CORRELATED ELECTRON SYSTEMS: SPIN-REFLECTION POSITIVITY AND SOME RIGOROUS RESULTS , 1998 .

[8]  M. Sigrist,et al.  The ground-state phase diagram of the one-dimensional Kondo lattice model , 1997 .

[9]  Shen Applications of reflection positivity in strongly correlated electron systems. , 1996, Physical review. B, Condensed matter.

[10]  Shen Total spin and antiferromagnetic correlation in the Kondo model. , 1996, Physical review. B, Condensed matter.

[11]  B. Nachtergaele,et al.  On the flux phase conjecture at half-filling: An improved proof , 1996, cond-mat/9604043.

[12]  E. Lieb,et al.  Stability of the Peierls instability for ring-shaped molecules. , 1994, Physical review. B, Condensed matter.

[13]  Lieb,et al.  Ground state of a general electron-phonon Hamiltonian is a spin singlet. , 1994, Physical review. B, Condensed matter.

[14]  E. Lieb,et al.  Flux phase of the half-filled band. , 1994, Physical review letters.

[15]  Vladimir E. Korepin,et al.  The One-Dimensional Hubbard Model , 1994 .

[16]  Shen,et al.  Ferrimagnetic long-range order of the Hubbard model. , 1994, Physical review letters.

[17]  A. Auerbach Interacting electrons and quantum magnetism , 1994 .

[18]  Shen,et al.  Exact demonstration of off-diagonal long-range order in the ground state of a Hubbard model. , 1993, Physical review letters.

[19]  E. Lieb,et al.  Uniform density theorem for the Hubbard model , 1993, cond-mat/9304015.

[20]  Ueda,et al.  Singlet ground state of the periodic Anderson model at half filling: A rigorous result. , 1992, Physical review letters.

[21]  Tian Rigorous theorems on off-diagonal long-range order in the negative-U Hubbard model. , 1992, Physical review. B, Condensed matter.

[22]  Kubo,et al.  Rigorous bounds on the susceptibilities of the Hubbard model. , 1990, Physical review. B, Condensed matter.

[23]  E. Lieb,et al.  Two theorems on the Hubbard model. , 1989, Physical review letters.

[24]  Sutherland,et al.  Localization of electronic wave functions due to local topology. , 1986, Physical review. B, Condensed matter.

[25]  Kohmoto,et al.  Electronic states on a Penrose lattice. , 1986, Physical review letters.

[26]  William G. Faris Invariant cones and uniqueness of the ground state for fermion systems , 1972 .

[27]  M. Thorpe,et al.  Electronic Properties of an Amorphous Solid. I. A Simple Tight-Binding Theory , 1971 .

[28]  Philip W. Anderson,et al.  New Approach to the Theory of Superexchange Interactions , 1959 .