Residual Diagnostics for Covariate Effects in Spatial Point Process Models

For a spatial point process model in which the intensity depends on spatial covariates, we develop graphical diagnostics for validating the covariate effect term in the model, and for assessing whether another covariate should be added to the model. The diagnostics are point-process counterparts of the well-known partial residual plots (component-plus-residual plots) and added variable plots for generalized linear models. The new diagnostics can be derived as limits of these classical techniques under increasingly fine discretization, which leads to efficient numerical approximations. The diagnostics can also be recognized as integrals of the point process residuals, enabling us to prove asymptotic results. The diagnostics perform correctly in a simulation experiment. We demonstrate their utility in an application to geological exploration, in which a point pattern of gold deposits is modeled as a point process with intensity depending on the distance to the nearest geological fault. Online supplementary materials include technical proofs, computer code, and results of a simulation study.

[1]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[2]  Frederic Paik Schoenberg,et al.  Multidimensional Residual Analysis of Point Process Models for Earthquake Occurrences , 2003 .

[3]  D. Pregibon Logistic Regression Diagnostics , 1981 .

[4]  E. Fowlkes Some diagnostics for binary logistic regression via smoothing , 1987 .

[5]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[6]  A. Pakes,et al.  Properties of residuals for spatial point processes , 2008 .

[7]  P. Wang Adding a Variable in Generalized Linear Models , 1985 .

[8]  W. A. Larsen,et al.  The Use of Partial Residual Plots in Regression Analysis , 1972 .

[9]  D. Warton,et al.  Correction note: Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology , 2010, 1011.3319.

[10]  J. Besag,et al.  Point process limits of lattice processes , 1982, Journal of Applied Probability.

[11]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[12]  F. Agterberg,et al.  Automatic contouring of geological maps to detect target areas for mineral exploration , 1974 .

[13]  E. Steyerberg,et al.  [Regression modeling strategies]. , 2011, Revista espanola de cardiologia.

[14]  E. Nadaraya On Estimating Regression , 1964 .

[15]  Karen Byth,et al.  On Kernel Methods of Estimating Marginal Radial and Angular Probability Density Functions , 1982 .

[16]  G. Leckie Bulletin of the International Statistical Institute , 2013 .

[17]  P. Hall The Bootstrap and Edgeworth Expansion , 1992 .

[18]  S. Weisberg Plots, transformations, and regression , 1985 .

[19]  D. Pregibon,et al.  Graphical Methods for Assessing Logistic Regression Models , 1984 .

[20]  A. Baddeley,et al.  Residual analysis for spatial point processes (with discussion) , 2005 .

[21]  Richard Kay,et al.  Assessing the fit of the logistic model: a case study of children with the haemolytic uraemic syndrome , 1986 .

[22]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[23]  Song Xi Chen,et al.  Empirical likelihood confidence intervals for nonparametric density estimation , 1996 .

[24]  Dietrich Stoyan,et al.  Second-order Characteristics for Stochastic Structures Connected with Gibbs Point Processes† , 1991 .

[25]  G. Bonham-Carter Geographic Information Systems for Geoscientists: Modelling with GIS , 1995 .

[26]  Mark Berman,et al.  Approximating Point Process Likelihoods with Glim , 1992 .

[27]  Frank E. Harrell,et al.  Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis , 2001 .

[28]  P. Wang Residual Plots for Detecting Nonlinearity in Generalized Linear Models , 1987 .

[29]  Yosihiko Ogata,et al.  Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes , 1988 .

[30]  A. Baddeley,et al.  Practical Maximum Pseudolikelihood for Spatial Point Patterns , 1998, Advances in Applied Probability.

[31]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[32]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[33]  A. C. Atkinson,et al.  Diagnostic Regression Analysis and Shifted Power Transformations , 1983 .

[34]  Adrian Baddeley,et al.  Leverage and Influence Diagnostics for Spatial Point Processes , 2013 .

[35]  Colin L. Mallows,et al.  Augmented partial residuals , 1986 .

[36]  D. Brillinger Comparative Aspects of the Study of Ordinary Time Series and of Point Processes , 1978 .

[37]  N. Fisher,et al.  Spatial logistic regression and change-of-support in Poisson point processes , 2010 .

[38]  R. Cowan An introduction to the theory of point processes , 1978 .

[39]  D. Collett,et al.  Modelling Binary Data , 1991 .

[40]  I NICOLETTI,et al.  The Planning of Experiments , 1936, Rivista di clinica pediatrica.

[41]  P. Hall EFFECT OF BIAS ESTIMATION ON COVERAGE ACCURACY OF BOOTSTRAP CONFIDENCE INTERVALS FOR A PROBABILITY DENSITY , 1992 .

[42]  M. Ezekiel A Method of Handling Curvilinear Correlation for Any Number of Variables , 1924 .

[43]  Carl Lee,et al.  Applied regression including computing and graphics , 2001 .

[44]  A. Baddeley,et al.  Residual analysis for spatial point processes (with discussion) , 2005 .

[45]  R. Dennis Cook,et al.  Exploring Partial Residual Plots , 1993 .

[46]  Peter Guttorp,et al.  Robustness for Inhomogeneous Poisson Point Processes , 1999 .

[47]  J. Horowitz Chapter 52 The Bootstrap , 2001 .

[48]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[49]  D. Stoyan,et al.  Discussion article on the paper Residual analysis for spatial point processes by A. Baddeley, R. Turner, J. Moller and M. Hazelton , 2005 .

[50]  R. Cook Added-variable plots and curvature in linear regression , 1996 .

[51]  Andrew B. Lawson,et al.  A Deviance Residual for Heterogeneous Spatial Poisson Processes , 1993 .

[52]  Adrian Baddeley,et al.  spatstat: An R Package for Analyzing Spatial Point Patterns , 2005 .

[53]  D. Groves,et al.  Gold prospectivity mapping using a geographic information system (GIS), with examples from the Yilgarn Block of Western Australia , 1997 .

[54]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[55]  Residual Analysis for Inhomogeneous Neyman–Scott Processes , 2011 .