Duty Ratio Modulation Strategy to Minimize Torque and Flux Linkage Ripples in IPMSM DTC Systems

The active vector effects on torque and flux linkage are different in interior permanent magnet synchronous motor (IPMSM) systems at different times under direct torque control (DTC). These different effects may cause overcompensation or undercompensation to torque and flux linkage leading to large torque and flux linkage ripples in the IPMSM DTC systems. A novel duty ratio modulation strategy for the IPMSM DTC systems is presented, which considers these differences that are ignored in conventional duty ratio modulation strategies. The proposed duty ratio modulation strategy aims at minimizing torque ripple and flux linkage ripple, which makes sure that the control system can work in an optimum state. The active angle, the impact angle, the active factor, and the impact factor are first introduced. The active angel and the impact angle are used to get the active factor and the impact factor, respectively. Every sector is divided into five small sectors based on the impact angels, and then, a switching table is redesigned according to the small sectors division. Also, the vector selection rules for the redesigned switching table are described in details. Subsequently, an optimal duty ratio can be derived through the simplified duty ratio determination method. Finally, the effectiveness of the proposed novel modulation strategy is verified through the experimental results on a 100-W IPMSM drive system.

[1]  Yuan Ren,et al.  Reduction of EMI with Chaotic Space Vector Modulation in Direct Torque Control , 2017 .

[2]  Yongchang Zhang,et al.  A Novel Duty Cycle Control Strategy to Reduce Both Torque and Flux Ripples for DTC of Permanent Magnet Synchronous Motor Drives With Switching Frequency Reduction , 2011, IEEE Transactions on Power Electronics.

[3]  Lixin Tang,et al.  A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency , 2004, IEEE Transactions on Power Electronics.

[4]  Yue Zhao,et al.  A space-vector modulated sensorless direct-torque control for direct-drive PMSG wind turbines , 2012, 2012 IEEE Industry Applications Society Annual Meeting.

[5]  Dan Xiao,et al.  A Direct Thrust Control Scheme for Linear Permanent Magnet Synchronous Motor Based on Online Duty Ratio Control , 2016, IEEE Transactions on Power Electronics.

[6]  Yuan Ren,et al.  Direct Torque Control of Permanent-Magnet Synchronous Machine Drives With a Simple Duty Ratio Regulator , 2014, IEEE Transactions on Industrial Electronics.

[7]  C Lascu,et al.  COMBINING THE PRINCIPLE OF SLIDING MODE, DTC, AND SVM IN HIGH PERFORMANCE SENSORLESS AC DRIVE , 2004 .

[8]  Yuan Ren,et al.  Reduction of Torque and Flux Ripples in Space Vector Modulation-Based Direct Torque Control of Asymmetric Permanent Magnet Synchronous Machine , 2017, IEEE Transactions on Power Electronics.

[9]  Han Ho Choi,et al.  Feedback Linearization Direct Torque Control With Reduced Torque and Flux Ripples for IPMSM Drives , 2016, IEEE Transactions on Power Electronics.

[10]  Kay Hameyer,et al.  Application of Sinusoidal Field Pole in a Permanent-Magnet Synchronous Machine to Improve the NVH Behavior Considering the MTPA and MTPV Operation Area , 2016, IEEE Transactions on Industry Applications.

[11]  Yongchang Zhang,et al.  A Simple Method to Reduce Torque Ripple in Direct Torque-Controlled Permanent-Magnet Synchronous Motor by Using Vectors With Variable Amplitude and Angle , 2011, IEEE Transactions on Industrial Electronics.

[12]  Wei Qiao,et al.  Adaptive Saturation Controller-Based Direct Torque Control for Permanent-Magnet Synchronous Machines , 2016, IEEE Transactions on Power Electronics.

[13]  Kay Hameyer,et al.  Concepts and designs of life support systems , 2008 .

[14]  Marian P. Kazmierkowski,et al.  Direct torque control of PWM inverter-fed AC motors - a survey , 2004, IEEE Transactions on Industrial Electronics.

[15]  Elias G. Strangas,et al.  Comparative Evaluation of Direct Torque Control Strategies for Permanent Magnet Synchronous Machines , 2016 .

[16]  Feng Niu,et al.  Direct Torque Control for Permanent-Magnet Synchronous Machines Based on Duty Ratio Modulation , 2015, IEEE Transactions on Industrial Electronics.

[17]  A.M. Khambadkone,et al.  Torque ripple analysis and dynamic performance of a space vector modulation based control method for AC-drives , 2005, IEEE Transactions on Power Electronics.