Pricing derivatives of American and game type in incomplete markets

Abstract.In this paper the neutral valuation approach is applied to American and game options in incomplete markets. Neutral prices occur if investors are utility maximizers and if derivative supply and demand are balanced. Game contingent claims are derivative contracts that can be terminated by both counterparties at any time before expiration. They generalize American options where this right is limited to the buyer of the claim. It turns out that as in the complete case, the price process of American and game contingent claims corresponds to a Snell envelope or to the value of a Dynkin game, respectively.On the technical level, an important role is played by $\sigma$-sub- and $\sigma$-supermartingales. We characterize these processes in terms of semimartingale characteristics.

[1]  H. Föllmer,et al.  Optional decompositions under constraints , 1997 .

[2]  Yuri Kifer,et al.  Game options , 2000, Finance Stochastics.

[3]  W Schachermeyer The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes , 1997 .

[4]  Thaleia Zariphopoulou,et al.  American options and transaction fees , 1995 .

[5]  M. Émery Stabilité des solutions des équations différentielles stochastiques application aux intégrales multiplicatives stochastiques , 1978 .

[6]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[7]  A. Bensoussan On the theory of option pricing , 1984, Acta Applicandae Mathematicae.

[8]  Jan Kallsen,et al.  Optimal portfolios for exponential Lévy processes , 2000, Math. Methods Oper. Res..

[9]  Andreas E. Kyprianou,et al.  Some calculations for Israeli options , 2004, Finance Stochastics.

[10]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[11]  Walter Schachermayer,et al.  ON UTILITY‐BASED PRICING OF CONTINGENT CLAIMS IN INCOMPLETE MARKETS , 2005 .

[12]  Jakša Cvitanić,et al.  Backward stochastic differential equations with reflection and Dynkin games , 1996 .

[13]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[14]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[15]  Jan Kallsen A utility maximization approach to hedging in incomplete markets , 1999, Math. Methods Oper. Res..

[16]  Jan Kallsen,et al.  Derivative pricing based on local utility maximization , 2002, Finance Stochastics.

[17]  J. Kallsen,et al.  σ-LOCALIZATION AND σ-MARTINGALES∗ , 2004 .

[18]  J. Lepeltier,et al.  Le jeu de dynkin en theorie generale sans l'hypothese de mokobodski , 1984 .

[19]  Yuri Kabanov,et al.  On the FTAP of Kreps-Delbaen-Schachermayer , 1997 .

[20]  W. Schachermayer Optimal investment in incomplete financial markets , 2002 .

[21]  D. Kramkov Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets , 1996 .

[22]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[23]  P. Protter Stochastic integration and differential equations , 1990 .

[24]  Steven Kou,et al.  Hedging American contingent claims with constrained portfolios , 1998, Finance Stochastics.

[25]  A. Kyprianou,et al.  Further calculations for Israeli options , 2004 .

[26]  P. Protter On the Existence, Uniqueness, Convergence and Explosions of Solutions of Systems of Stochastic Integral Equations , 1977 .

[27]  J. Jacod,et al.  Integrales stochastiques par rapport a une semimartingale vectorielle et changements de filtration , 1980 .

[28]  R. Frey,et al.  Bounds on European Option Prices under Stochastic Volatility , 1999 .

[29]  H. Föllmer,et al.  Hedging of contingent claims under incomplete in-formation , 1991 .

[30]  Christoph Kühn,et al.  Game contingent claims in complete and incomplete markets. , 2004 .

[31]  Jakša Cvitanić,et al.  Super-replication in stochastic volatility models under portfolio constraints , 1999, Journal of Applied Probability.

[32]  Jan Kallsen,et al.  Utility-Based Derivative Pricing in Incomplete Markets , 2002 .

[33]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[34]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[35]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[36]  I. Karatzas On the pricing of American options , 1988 .

[37]  C. Kühn Pricing contingent claims in incomplete markets when the holder can choose among different payoffs , 2002 .

[38]  Anja Sturm,et al.  Stochastic Integration and Differential Equations. Second Edition. , 2005 .

[39]  Hans Föllmer,et al.  Optional decomposition and Lagrange multipliers , 1997, Finance Stochastics.

[40]  J. Kallsen,et al.  A Complete Explicit Solution to the Log-Optimal Portfolio Problem , 2003 .

[41]  A. N. Shiryaev,et al.  VECTOR STOCHASTIC INTEGRALS AND THE FUNDAMENTAL THEOREMS OF ASSET PRICING , 2003 .

[42]  Philip Protter,et al.  ℋp stability of solutions of stochastic differential equations , 1978 .