A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode

[1]  C. Banks,et al.  Exploration of gas sensing possibilities with edge plane pyrolytic graphite electrodes: nitrogen dioxide detection. , 2005, The Analyst.

[2]  C. Banks,et al.  Edge Plane Pyrolytic Graphite Electrodes for Halide Detection in Aqueous Solutions , 2005 .

[3]  M. N. Myers,et al.  Theoretical and experimental characterization of flow field-flow fractionation , 1976 .

[4]  Xiangqin Lin,et al.  Novel choline and acetylcholine modified glassy carbon electrodes for simultaneous determination of dopamine, serotonin and ascorbic acid , 2004 .

[5]  A. Michael,et al.  Simultaneous determination of biogenic monoamines in rat brain dialysates using capillary high-performance liquid chromatography with photoluminescence following electron transfer. , 2006, Analytical chemistry.

[6]  Itaru Honma,et al.  Biosensing Properties of TitanateNanotube Films: Selective Detection of Dopamine in the Presence of Ascorbate and Uric Acid , 2006 .

[7]  G. Piccione,et al.  Central fatigue and nycthemeral change of serum tryptophan and serotonin in the athletic horse , 2005, Journal of circadian rhythms.

[8]  F. B. Salem Spectrophotometric and titrimetric determination of catecholamines. , 1987, Talanta.

[9]  D. Watson,et al.  Analysis of biogenic amines in the brain of the American cockroach (Periplaneta americana) by gas chromatography-negative ion chemical ionisation mass spectrometry. , 1989, Journal of chromatography.

[10]  Gal Yadid,et al.  The serotonin–dopamine interaction is critical for fast-onset action of antidepressant treatment: in vivo studies in an animal model of depression , 2004, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[11]  R. Ramaraj,et al.  Electrochemically deposited nanostructured platinum on Nafion coated electrode for sensor applications , 2005 .

[12]  C. Banks,et al.  Simultaneous Determination of Uric Acid and Ascorbic Acid Using Edge Plane Pyrolytic Graphite Electrodes , 2006 .

[13]  J. Kehr,et al.  Derivatization chemistries for determination of serotonin, norepinephrine and dopamine in brain microdialysis samples by liquid chromatography with fluorescence detection. , 2006, Biomedical chromatography : BMC.

[14]  Shu-Hua Cheng,et al.  A strategy for the determination of dopamine at a bare glassy carbon electrode: p-Phenylenediamine as a nucleophile , 2006 .

[15]  C. Banks,et al.  Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine , 2005, Analytical and bioanalytical chemistry.

[16]  Liping Lu,et al.  Attachment of DNA to the Carbon Fiber Microelectrode via Gold Nanoparticles for Simultaneous Determination of Dopamine and Serotonin , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[17]  R. Wightman,et al.  Detection of dopamine dynamics in the brain. , 1988, Analytical chemistry.

[18]  N. Teshima,et al.  Flow-injection determination of trace amounts of dopamine by chemiluminescence detection. , 1999, Talanta.

[19]  Song Zhang,et al.  In vivo determination of the monoamine neurotransmitters in rat brain by liquid chromatography with a thioctic acid/iridium oxide–palladium modified electrode , 2002 .

[20]  Yinfa Ma,et al.  Simultaneous determination of polyamines and catecholamines in PC‐12 tumor cell extracts by capillary electrophoresis with laser‐induced fluorescence detection , 2004, Electrophoresis.

[21]  A. Telefoncu,et al.  A sensitive determination of dopamine in the presence of ascorbic acid using a nafion-coated clinoptilolite-modified carbon paste electrode , 2005, Analytical and bioanalytical chemistry.

[22]  R. Ramaraj,et al.  Simultaneous determination of dopamine and serotonin in the presence of ascorbic acid and uric acid at poly(o-phenylenediamine) modified electrode , 2003 .

[23]  S. Yasui,et al.  Simultaneous voltammetric measurement of nitrite ion, dopamine, serotonin with ascorbic acid on the GRC electrode , 1999 .

[24]  K. Perry,et al.  Effect of fluoxetine on serotonin and dopamine concentration in microdialysis fluid from rat striatum. , 1992, Life sciences.

[25]  C. Banks,et al.  New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. , 2006, The Analyst.

[26]  R. Ramaraj,et al.  Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode , 2003 .

[27]  M. Israël A chemiluminescent serotonin assay , 2003, Neurochemistry International.

[28]  C. Banks,et al.  Direct Oxidation of Ascorbic Acid at an Edge Plane Pyrolytic Graphite Electrode: A Comparison of the Electroanalytical Response with Other Carbon Electrodes , 2005 .

[29]  Yuzhong Zhang,et al.  Determination of dopamine in the presence of ascorbic acid by poly(styrene sulfonic acid) sodium salt/single-wall carbon nanotube film modified glassy carbon electrode. , 2006, Analytical biochemistry.

[30]  Martin Arundell,et al.  Subsecond voltammetric separation between dopamine and serotonin in the presence of ascorbate. , 2006, Analytical chemistry.

[31]  J. Kehr,et al.  Determination of serotonin, noradrenaline, dopamine and their metabolites in rat brain extracts and microdialysis samples by column liquid chromatography with fluorescence detection following derivatization with benzylamine and 1,2-diphenylethylenediamine. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[32]  Shengshui Hu,et al.  Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. , 2003, Analytical biochemistry.

[33]  Shen-Ming Chen,et al.  Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes , 2006 .

[34]  N. Dovichi,et al.  Application of capillary electrophoresis with laser-induced fluorescence detection to the determination of biogenic amines and amino acids in brain microdialysate and homogenate samples. , 2001, Journal of chromatography. A.

[35]  R. Adams,et al.  Probing brain chemistry with electroanalytical techniques. , 1976, Analytical chemistry.

[36]  Qionglin Liang,et al.  Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid , 2003 .

[37]  J. Oni,et al.  Simultaneous voltammetric determination of dopamine and serotonin on carbon paste electrodes modified with iron(II) phthalocyanine complexes , 2001 .

[38]  C. Banks,et al.  Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. , 2005, The Analyst.

[39]  Lei Zhang,et al.  Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid , 2005, Analytical and bioanalytical chemistry.

[40]  C. Banks,et al.  Edge Plane Pyrolytic Graphite Electrodes in Electroanalysis: An Overview , 2005, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[41]  R. R. Moore,et al.  Electrocatalytic detection of thiols using an edge plane pyrolytic graphite electrode. , 2004, The Analyst.

[42]  Xiangqin Lin,et al.  Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine , 2005 .

[43]  L. Parsons,et al.  Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis , 1993, Brain Research.