KCC2 drives chloride microdomain formation in dendritic blebbing.

[1]  Steven L Jones,et al.  INF2-mediated actin filament reorganization confers intrinsic resilience to neuronal ischemic injury , 2021, bioRxiv.

[2]  Hil G. E. Meijer,et al.  Glial Chloride Homeostasis Under Transient Ischemic Stress , 2021, Frontiers in Cellular Neuroscience.

[3]  K. Lillis,et al.  Unique Actions of GABA Arising from Cytoplasmic Chloride Microdomains , 2020, The Journal of Neuroscience.

[4]  R. Lifton,et al.  Developmentally regulated KCC2 phosphorylation is essential for dynamic GABA-mediated inhibition and survival , 2019, Science Signaling.

[5]  S. Duan,et al.  Ultrafast optical clearing method for three-dimensional imaging with cellular resolution , 2019, Proceedings of the National Academy of Sciences.

[6]  H. Luhmann,et al.  Interactions between Membrane Resistance, GABA-A Receptor Properties, Bicarbonate Dynamics and Cl−-Transport Shape Activity-Dependent Changes of Intracellular Cl− Concentration , 2019, International journal of molecular sciences.

[7]  N. Brandon,et al.  Potentiating KCC2 activity is sufficient to limit the onset and severity of seizures , 2018, Proceedings of the National Academy of Sciences.

[8]  K. Staley,et al.  Transient ischemia facilitates neuronal chloride accumulation and severity of seizures , 2018, Annals of clinical and translational neurology.

[9]  U. Valentin Nägerl,et al.  Super-Resolution Imaging of the Extracellular Space in Living Brain Tissue , 2018, Cell.

[10]  Rafael Yuste,et al.  Attenuation of Synaptic Potentials in Dendritic Spines. , 2017, Cell reports.

[11]  J. Morley,et al.  Astrocytic modulation of neuronal excitability through K+ spatial buffering , 2017, Neuroscience & Biobehavioral Reviews.

[12]  K. Staley,et al.  Chloride Dysregulation, Seizures, and Cerebral Edema: A Relationship with Therapeutic Potential , 2017, Trends in Neurosciences.

[13]  C. Rose,et al.  Glutamate transporter‐associated anion channels adjust intracellular chloride concentrations during glial maturation , 2017, Glia.

[14]  T. Kuner,et al.  Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition , 2016, Scientific Reports.

[15]  L. Vinay,et al.  Chloride Regulation: A Dynamic Equilibrium Crucial for Synaptic Inhibition , 2016, Neuron.

[16]  Roger J. Thompson,et al.  Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity , 2016, Nature Neuroscience.

[17]  J. Poncer,et al.  KCC2 Gates Activity-Driven AMPA Receptor Traffic through Cofilin Phosphorylation , 2015, The Journal of Neuroscience.

[18]  Dmitri A. Rusakov,et al.  Time-Resolved Imaging Reveals Heterogeneous Landscapes of Nanomolar Ca2+ in Neurons and Astroglia , 2015, Neuron.

[19]  Nanna MacAulay,et al.  Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading , 2015, The Journal of Neuroscience.

[20]  S. Alper,et al.  K-Cl cotransporters, cell volume homeostasis, and neurological disease. , 2015, Trends in molecular medicine.

[21]  B. MacVicar,et al.  The Cellular Mechanisms of Neuronal Swelling Underlying Cytotoxic Edema , 2015, Cell.

[22]  B. MacVicar,et al.  Fixation and Immunolabeling of Brain Slices: SNAPSHOT Method , 2015, Current protocols in neuroscience.

[23]  T. Gensch,et al.  Determination of Intracellular Chloride Concentrations by Fluorescence Lifetime Imaging , 2015 .

[24]  K. Staley,et al.  Novel determinants of the neuronal Cl− concentration , 2014, The Journal of physiology.

[25]  J. A. Payne,et al.  Cation-chloride cotransporters in neuronal development, plasticity and disease , 2014, Nature Reviews Neuroscience.

[26]  B. MacVicar,et al.  Activation of Neuronal NMDA Receptors Triggers Transient ATP-Mediated Microglial Process Outgrowth , 2014, The Journal of Neuroscience.

[27]  D. Alessi,et al.  The WNK-SPAK/OSR1 pathway: Master regulator of cation-chloride cotransporters , 2014, Science Signaling.

[28]  Y. Saponjian,et al.  Response to Comments on “Local impermeant anions establish the neuronal chloride concentration” , 2014, Science.

[29]  K. Kaila,et al.  Modulation of neuronal activity by phosphorylation of the K–Cl cotransporter KCC2 , 2013, Trends in Neurosciences.

[30]  William R. Lloyd,et al.  Fluorescence lifetime imaging microscopy for quantitative biological imaging. , 2013, Methods in cell biology.

[31]  Roger J. Thompson,et al.  Anoxia-Induced NMDA Receptor Activation Opens Pannexin Channels via Src Family Kinases , 2012, The Journal of Neuroscience.

[32]  A. Sood,et al.  N-Methyl-d-aspartate Receptor- and Calpain-mediated Proteolytic Cleavage of K+-Cl− Cotransporter-2 Impairs Spinal Chloride Homeostasis in Neuropathic Pain* , 2012, The Journal of Biological Chemistry.

[33]  O. Garaschuk,et al.  Two-photon chloride imaging using MQAE in vitro and in vivo. , 2012, Cold Spring Harbor protocols.

[34]  J. Kleinman,et al.  Transcript-Specific Associations of SLC12A5 (KCC2) in Human Prefrontal Cortex with Development, Schizophrenia, and Affective Disorders , 2012, The Journal of Neuroscience.

[35]  P. Sah,et al.  Small-conductance Ca2+-activated K+ channels: form and function. , 2012, Annual review of physiology.

[36]  Yves De Koninck,et al.  Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis , 2011, PLoS Comput. Biol..

[37]  R. Straub,et al.  Expression of GABA Signaling Molecules KCC2, NKCC1, and GAD1 in Cortical Development and Schizophrenia , 2011, The Journal of Neuroscience.

[38]  S. Moss,et al.  NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor mediated currents , 2011, Nature Neuroscience.

[39]  William R. Lloyd,et al.  Instrumentation to rapidly acquire fluorescence wavelength-time matrices of biological tissues , 2010, Biomedical optics express.

[40]  R. Vink,et al.  Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments , 2010, Current opinion in neurology.

[41]  O. Witte,et al.  Downregulation of Potassium Chloride Cotransporter KCC2 After Transient Focal Cerebral Ischemia , 2010, Stroke.

[42]  L. Jan,et al.  Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2 , 2009, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Claudio Rivera,et al.  Cation-Chloride Cotransporters and Neuronal Function , 2009, Neuron.

[44]  Roger J. Thompson,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S6 References Activation of Pannexin-1 Hemichannels Augments Aberrant Bursting in the Hippocampus , 2022 .

[45]  Brian J. Bacskai,et al.  Aβ Plaques Lead to Aberrant Regulation of Calcium Homeostasis In Vivo Resulting in Structural and Functional Disruption of Neuronal Networks , 2008, Neuron.

[46]  Rafael Yuste,et al.  Photorelease of GABA with Visible Light Using an Inorganic Caging Group , 2008, Frontiers in neural circuits.

[47]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[48]  Juha Voipio,et al.  GABAergic Depolarization of the Axon Initial Segment in Cortical Principal Neurons Is Caused by the Na–K–2Cl Cotransporter NKCC1 , 2008, The Journal of Neuroscience.

[49]  Timothy H Murphy,et al.  Two-Photon Imaging of Stroke Onset In Vivo Reveals That NMDA-Receptor Independent Ischemic Depolarization Is the Major Cause of Rapid Reversible Damage to Dendrites and Spines , 2008, The Journal of Neuroscience.

[50]  D. Rossi,et al.  Astrocyte metabolism and signaling during brain ischemia , 2007, Nature Neuroscience.

[51]  Michael Wong,et al.  Kainate Seizures Cause Acute Dendritic Injury and Actin Depolymerization In Vivo , 2007, The Journal of Neuroscience.

[52]  R. Miles,et al.  Perturbed Chloride Homeostasis and GABAergic Signaling in Human Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[53]  K. Obata,et al.  Calcium-dependent NMDA-induced dendritic injury and MAP2 loss in acute hippocampal slices , 2007, Neuroscience.

[54]  Y. Okada,et al.  Roles of Volume-Sensitive Chloride Channel in Excitotoxic Neuronal Injury , 2007, The Journal of Neuroscience.

[55]  George J Augustine,et al.  Imaging synaptic inhibition in transgenic mice expressing the chloride indicator, Clomeleon , 2006, Brain cell biology.

[56]  G. Feng,et al.  The Chloride Transporter Na+-K+-Cl− Cotransporter Isoform-1 Contributes to Intracellular Chloride Increases after In Vitro Ischemia , 2006, The Journal of Neuroscience.

[57]  Y. Koninck,et al.  Differential Maturation of GABA Action and Anion Reversal Potential in Spinal Lamina I Neurons: Impact of Chloride Extrusion Capacity , 2005, The Journal of Neuroscience.

[58]  A. Matus,et al.  Actin Redistribution Underlies the Sparing Effect of Mild Hypothermia on Dendritic Spine Morphology after in Vitro Ischemia , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[59]  Timothy H Murphy,et al.  Rapid Reversible Changes in Dendritic Spine Structure In Vivo Gated by the Degree of Ischemia , 2005, The Journal of Neuroscience.

[60]  B. Sabatini,et al.  SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines , 2005, Nature Neuroscience.

[61]  J. A. Payne,et al.  Cation transport by the neuronal K(+)-Cl(-) cotransporter KCC2: thermodynamics and kinetics of alternate transport modes. , 2004, American journal of physiology. Cell physiology.

[62]  S. Frings,et al.  Chloride Accumulation in Mammalian Olfactory Sensory Neurons , 2004, The Journal of Neuroscience.

[63]  D. Attwell,et al.  Sequential Release of GABA by Exocytosis and Reversed Uptake Leads to Neuronal Swelling in Simulated Ischemia of Hippocampal Slices , 2004, The Journal of Neuroscience.

[64]  Yves De Koninck,et al.  Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain , 2003, Nature.

[65]  D. Kintner,et al.  Astrocytes from Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in EAA release. , 2002, American journal of physiology. Cell physiology.

[66]  S. Frings,et al.  Determination of intracellular chloride concentration in dorsal root ganglion neurons by fluorescence lifetime imaging , 2002 .

[67]  Jerome Mertz,et al.  Two-photon microscopy in brain tissue: parameters influencing the imaging depth , 2001, Journal of Neuroscience Methods.

[68]  A. Sik,et al.  The KCl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus , 2001, The European journal of neuroscience.

[69]  M. Goldberg,et al.  Dendritic Spines Lost during Glutamate Receptor Activation Reemerge at Original Sites of Synaptic Contact , 2001, The Journal of Neuroscience.

[70]  J. Hablitz,et al.  Potassium-Coupled Chloride Cotransport Controls Intracellular Chloride in Rat Neocortical Pyramidal Neurons , 2000, The Journal of Neuroscience.

[71]  George J. Augustine,et al.  A Genetically Encoded Ratiometric Indicator for Chloride Capturing Chloride Transients in Cultured Hippocampal Neurons , 2000, Neuron.

[72]  N. Akaike,et al.  Reversibility and cation selectivity of the K(+)-Cl(-) cotransport in rat central neurons. , 2000, Journal of neurophysiology.

[73]  M Migliore,et al.  Dendritic potassium channels in hippocampal pyramidal neurons , 2000, The Journal of physiology.

[74]  K. Staley,et al.  Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl− and HCO3− transport , 1999, The Journal of physiology.

[75]  U. Misgeld,et al.  A Furosemide-Sensitive K+–Cl−Cotransporter Counteracts Intracellular Cl− Accumulation and Depletion in Cultured Rat Midbrain Neurons , 1999, The Journal of Neuroscience.

[76]  J. A. Payne,et al.  The Neuron-specific K-Cl Cotransporter, KCC2 , 1999, The Journal of Biological Chemistry.

[77]  Masaki Tanaka,et al.  Simultaneous optical imaging of intracellular Cl− in neurons in different layers of rat neocortical slices: advantages and limitations , 1998, Neuroscience Research.

[78]  S. Halpain,et al.  Regulation of F-Actin Stability in Dendritic Spines by Glutamate Receptors and Calcineurin , 1998, The Journal of Neuroscience.

[79]  M. Goldberg,et al.  Distinct Roles for Sodium, Chloride, and Calcium in Excitotoxic Dendritic Injury and Recovery , 1998, Experimental Neurology.

[80]  J. A. Payne Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]oregulation. , 1997, American journal of physiology. Cell physiology.

[81]  C. Nicholson,et al.  Extracellular potassium, volume fraction, and tortuosity in rat hippocampal CA1, CA3, and cortical slices during ischemia. , 1995, Journal of neurophysiology.

[82]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[83]  J. Daugirdas,et al.  Use of MQAE for measurement of intracellular [Cl-] in cultured aortic smooth muscle cells. , 1994, The American journal of physiology.

[84]  R. S. Williams,et al.  Evidence for neuronal degeneration and dendritic plasticity in cortical pyramidal neurons of Huntington's disease , 1993, Neurology.

[85]  A. Verkman,et al.  Cell-permeable fluorescent indicator for cytosolic chloride. , 1991, Biochemistry.

[86]  R. Dingledine,et al.  Regional variation of extracellular space in the hippocampus. , 1990, Science.

[87]  H. Kettenmann,et al.  GABA-activated Cl- channels in astrocytes of hippocampal slices , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  A S Verkman,et al.  Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications. , 1989, Analytical biochemistry.

[89]  M. Nedergaard,et al.  Brain ion homeostasis in cerebral ischemia. , 1988, Neurochemical pathology.

[90]  H. Kettenmann,et al.  Pharmacological properties of gamma-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astrocytes , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  S. Rothman The neurotoxicity of excitatory amino acids is produced by passive chloride influx , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  J. Barker,et al.  Amino acid pharmacology of mammalian central neurones grown in tissue culture. , 1978, The Journal of physiology.