PEGylated Nanoparticles for Biological and Pharmaceutical Applications

The utility of polymeric micelles formed through the multimolecular assembly of block copolymer was comprehensively described as novel core-shell typed colloidal carriers for drug and gene targeting. Particularly, novel approaches for the formation of functionalized poly(ethylene glycol) (PEG) layers as hydrophilic outer shell were focused to attain receptor-mediated drug and gene delivery through PEG-conjugated ligands with a minimal non-specific interaction with other proteins. Surface organization of block copolymer micelles with cross-linking core was also described from a standpoint of the preparation of a new functional surface-coating with a unique macromolecular architecture. The micelle-attached surface and the thin hydrogel layer made by layered micelles exhibited nonfouling properties and worked as the reservoir for hydrophobic reagents. Furthermore, the potential utility of multimolecular assembly derived from heterobifunctional PEGs and block copolymers were explored to systematically modify the properties of metal and semiconductor nanostructures by controlling their structure and their surface properties, making them extremely attractive for use in biological and biomedical applications.

[1]  Takashi Okada,et al.  The Reactive Polymeric Micelle Based on An Aldehyde-Ended Poly(ethylene glycol)/Poly(lactide) Block Copolymer , 1998 .

[2]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[3]  A. Libchaber,et al.  Single-mismatch detection using gold-quenched fluorescent oligonucleotides , 2001, Nature Biotechnology.

[4]  A. Russell,et al.  Creating molecular barriers to acute platelet deposition on damaged arteries with reactive polyethylene glycol. , 1998, Journal of biomedical materials research.

[5]  M. Natan,et al.  Colloidal Au-enhanced surface plasmon resonance immunosensing. , 1998, Analytical chemistry.

[6]  Yokoyama Masayuki,et al.  Polymer micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer , 1990 .

[7]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[8]  Luca Quaroni,et al.  Preparation of Polymer-Coated Functionalized Silver Nanoparticles , 1999 .

[9]  Paul F. Barbara,et al.  Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly , 2000, Nature.

[10]  Alan Campion,et al.  Size quantization effects in cadmium sulfide layers formed by a Langmuir-Blodgett technique , 1988 .

[11]  Chia-Chun Chen,et al.  Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. , 2002, Journal of the American Chemical Society.

[12]  Teruo Okano,et al.  Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-Adriamycin conjugates , 1994 .

[13]  Markus Antonietti,et al.  Superstructures of Functional Colloids: Chemistry on the Nanometer Scale , 1997 .

[14]  D G Myszka,et al.  Advances in surface plasmon resonance biosensor analysis. , 2000, Current opinion in biotechnology.

[15]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[16]  Kazunori Kataoka,et al.  Dynamic wettability study on the functionalized PEGylated layer on a polylactide surface constructed by the coating of aldehyde–ended poly(ethylene glycol) (PEG)/polylactide (PLA) block copolymer , 2000 .

[17]  K. Kataoka,et al.  Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. , 1997, Bioconjugate chemistry.

[18]  Yokoyama Masayuki,et al.  Block copolymer micelles as vehicles for drug delivery , 1993 .

[19]  Teruo Okano,et al.  Introduction of cisplatin into polymeric micelle , 1996 .

[20]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[21]  Kinam Park,et al.  Surface modification using silanated poly(ethylene glycol)s. , 2000, Biomaterials.

[22]  Louis E. Brus,et al.  Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .

[23]  Atsushi Harada,et al.  Synthesis of Poly(ethylene glycol)-block-poly(ethylenimine) Possessing an Acetal Group at the PEG End , 2000 .

[24]  Xiaogang Peng,et al.  Preparation and structure of quantum-sized cadmium sulfide grown in amphiphilic oligomer Langmuir–Blodgett films , 1998 .

[25]  J. Fuente,et al.  Gold Glyconanoparticles as Building Blocks for Nanomaterials Design , 2002 .

[26]  P. Couvreur,et al.  Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). , 1997, Journal of biomedical materials research.

[27]  Kui Yu,et al.  Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and N-alkylpyridinium cations , 1997 .

[28]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[29]  G. López,et al.  Attachment of bacteria to model solid surfaces: oligo(ethylene glycol) surfaces inhibit bacterial attachment. , 1996, FEMS microbiology letters.

[30]  J. M. Harris,et al.  Effects on protein adsorption, bacterial adhesion and contact angle of grafting PEG chains to polystyrene , 1993 .

[31]  T. Okano,et al.  Micelles based on AB block copolymers of poly(ethylene oxide) and poly(.beta.-benzyl L-aspartate) , 1993 .

[32]  Masao Kato,et al.  Sugar-Installed Polymer Micelles: Synthesis and Micellization of Poly(ethylene glycol)−Poly(d,l-lactide) Block Copolymers Having Sugar Groups at the PEG Chain End , 1999 .

[33]  N. Melik-Nubarov,et al.  The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles , 1989, FEBS letters.

[34]  Yuji Yamamoto,et al.  Surface charge modulation of poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles: Conjugation of charged peptides , 1999 .

[35]  John K. Jackson,et al.  Development of amphiphilic diblock copolymers as micellar carriers of taxol , 1996 .

[36]  Guenter Schmid,et al.  Large clusters and colloids. Metals in the embryonic state , 1992 .

[37]  H. Ploehn,et al.  Polyamine−Quantum Dot Nanocomposites: Linear versus Starburst Stabilizer Architectures , 1999 .

[38]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[39]  Wei Ji,et al.  Synthesis, Characterization, and Nonlinear Optical Properties of Copper Nanoparticles , 1997 .

[40]  Christine Vauthier,et al.  Pegylated Nanoparticles from a Novel Methoxypolyethylene Glycol Cyanoacrylate-Hexadecyl Cyanoacrylate Amphiphilic Copolymer , 1998, Pharmaceutical Research.

[41]  R. Murray,et al.  Nanometer Gold Clusters Protected by Surface-Bound Monolayers of Thiolated Poly(ethylene glycol) Polymer Electrolyte , 1998 .

[42]  K. Kataoka,et al.  Core-Polymerized Reactive Micelles from Heterotelechelic Amphiphilic Block Copolymers , 1999 .

[43]  K. Kataoka Design of nanoscopic vehicles for drug targeting based on micellization of amphiphilic block copolymers , 1994 .

[44]  A. Rogach,et al.  Thiol-stabilized CdSe and CdTe nanocrystals in the size quantization regime: Synthesis, optical and structural properties , 1998 .

[45]  C. Williams,et al.  Biotechnology match making: screening orphan ligands and receptors. , 2000, Current opinion in biotechnology.

[46]  K. Kataoka,et al.  Effect of the secondary structure of poly(L-lysine) segments on the micellization in aqueous milieu of poly(ethylene glycol)-poly(L-lysine) block copolymer partially substituted with a hydrocinnamoyl group at the N∈-position , 1998 .

[47]  G. Schmid Clusters and Colloids , 1994 .

[48]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[49]  Y. Nagasaki,et al.  Synthesis of heterobifunctional poly(ethylene glycol) with a reducing monosaccharide residue at one end. , 1998, Bioconjugate chemistry.

[50]  Sidorov,et al.  Stabilization of Metal Nanoparticles in Aqueous Medium by Polyethyleneoxide-Polyethyleneimine Block Copolymers. , 1999, Journal of colloid and interface science.

[51]  Chad A Mirkin,et al.  Directed Assembly of Periodic Materials from Protein and Oligonucleotide-Modified Nanoparticle Building Blocks. , 2001, Angewandte Chemie.

[52]  Atsushi Harada,et al.  Spontaneous Formation of Polyion Complex Micelles with Narrow Distribution from Antisense Oligonucleotide and Cationic Block Copolymer in Physiological Saline , 1996 .

[53]  Y. Nagasaki,et al.  Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D,L-lactide) block copolymers as potential drug carrier. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[54]  Y. Nagasaki,et al.  Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end. , 1995, Bioconjugate chemistry.

[55]  T. Okano,et al.  Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. , 1991, Cancer research.

[56]  C. Mirkin,et al.  Materials chemistry: Semiconductors meet biology , 2000, Nature.

[57]  R. Winkler,et al.  Surface Micellar Nanopattern Formation of Adsorbed Diblock Copolymer Systems , 1999 .

[58]  Christine D. Keating,et al.  Self-assembly of single electron transistors and related devices , 1998 .

[59]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[60]  M. Dahan,et al.  Time-gated biological imaging by use of colloidal quantum dots. , 2001, Optics letters.

[61]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[62]  J. Fendler,et al.  Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed CdS and ZnS semiconductor particles. Preparation and utilization for photosensitized charge separation and hydrogen generation , 1988 .

[63]  E. A. Lysenko,et al.  Block ionomer complexes from polystyrene-block-polyacrylate anions and N-cetylpyridinium cations , 1998 .

[64]  Stephen E. Harding,et al.  Polylactide−Poly(ethylene glycol) Copolymers as Drug Delivery Systems. 1. Characterization of Water Dispersible Micelle-Forming Systems , 1996 .

[65]  K. Kataoka,et al.  Functionality of polymeric micelle hydrogels with organized three-dimensional architecture on surfaces , 2000 .

[66]  Pavel Kratochvíl,et al.  Micelles of Block and Graft Copolymers in Solutions , 1993 .

[67]  Lieng-Huang Lee,et al.  Fundamentals of adhesion , 1991 .

[68]  R. Corn,et al.  Surface plasmon resonance imaging measurements of ultrathin organic films. , 2003, Annual review of physical chemistry.

[69]  Janos H. Fendler,et al.  Nanoparticles and Nanostructured Films , 1998 .

[70]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[71]  Lin He,et al.  Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization , 2000 .

[72]  Kazunori Kataoka,et al.  Quantitative and Reversible Lectin-Induced Association of Gold Nanoparticles Modified with α-Lactosyl-ω-mercapto-poly(ethylene glycol) , 2001 .

[73]  K. Kataoka,et al.  Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. , 1998, Journal of pharmaceutical sciences.

[74]  K. Ulbrich,et al.  Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. , 1996, Human gene therapy.

[75]  T. Okano,et al.  Preparation and Characterization of Self-Assembled Polymer−Metal Complex Micelle from cis-Dichlorodiammineplatinum(II) and Poly(ethylene glycol)−Poly(α,β-aspartic acid) Block Copolymer in an Aqueous Medium , 1999 .

[76]  Premnath,et al.  Poly(ethylene oxide) Grafted to Silicon Surfaces: Grafting Density and Protein Adsorption. , 1998, Macromolecules.

[77]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[78]  H. Weller Colloidal Semiconductor Q‐Particles: Chemistry in the Transition Region Between Solid State and Molecules , 1993 .

[79]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[80]  J. Rojo,et al.  Gold Glyconanoparticles as Water-Soluble Polyvalent Models To Study Carbohydrate Interactions. , 2001, Angewandte Chemie.

[81]  C. Mirkin,et al.  DNA-modified core-shell Ag/Au nanoparticles. , 2001, Journal of the American Chemical Society.

[82]  Y. Nagasaki,et al.  Surface characterization of functionalized polylactide through the coating with heterobifunctional poly(ethylene glycol)/polylactide block copolymers. , 2000, Biomacromolecules.

[83]  L. Motte,et al.  Synthesis “in situ” in reverse micelles of silver sulfide semiconductors , 1996 .

[84]  Christine Allen,et al.  Nano-engineering block copolymer aggregates for drug delivery , 1999 .

[85]  A. Henglein,et al.  Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles , 1989 .

[86]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[87]  E. Merrill,et al.  Hepatocyte culture on carbohydrate-modified star polyethylene oxide hydrogels. , 1996, Biomaterials.

[88]  A. Eisenberg,et al.  Size Control of Nanoparticles in Semiconductor-Polymer Composites. 1. Control via Multiplet Aggregation Numbers in Styrene-Based Random Ionomers , 1995 .

[89]  J. K. Thomas,et al.  Cadmium sulfide of small dimensions produced in inverted micelles , 1986 .

[90]  I. Goldstein,et al.  2 – Isolation, Physicochemical Characterization, and Carbohydrate-Binding Specificity of Lectins , 1986 .

[91]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[92]  K. Kataoka,et al.  Coating of surfaces with stabilized reactive micelles from poly(ethylene glycol)-poly(DL-lactic acid) block copolymer , 1999 .

[93]  J. Joanny,et al.  Block copolymer adsorption in a selective solvent: a kinetic study , 1990 .

[94]  G. J. Fleer,et al.  Adsorption kinetics of diblock copolymers from a micellar solution on silica and titania , 1998 .

[95]  E. Katz,et al.  Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[96]  M. Antonietti,et al.  Synthesis and characterization of noble metal colloids in block copolymer micelles , 1995 .

[97]  Chad A. Mirkin,et al.  Programmed Assembly of DNA Functionalized Quantum Dots , 1999 .

[98]  T. Okano,et al.  FUNCTIONAL AND SITE-SPECIFIC MACROMOLECULAR MICELLES AS HIGH POTENTIAL DRUG CARRIERS , 1999 .

[99]  E. Matijević,et al.  Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates , 2000 .

[100]  C. Mirkin,et al.  Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides , 2000 .

[101]  M. Antonietti,et al.  Induced micellization by interaction of poly(2-vinylpyridine)-block-poly(ethylene oxide) with metal compounds. Micelle characteristics and metal nanoparticle formation. , 1999 .

[102]  Kazunori Kataoka,et al.  Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications , 2001 .

[103]  A. Eisenberg,et al.  Micellization of Ionic Block Copolymers , 1996 .

[104]  I. Agapov,et al.  Preliminary crystallographic characterization of ricin agglutinin , 1997, Proteins.

[105]  D. Bazile,et al.  Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. , 1995, Journal of pharmaceutical sciences.

[106]  H. Otsuka,et al.  Selective synthesis of heterobifunctional poly(ethylene glycol) derivatives containing both mercapto and acetal terminals. , 2000, Bioconjugate chemistry.

[107]  Atsushi Harada,et al.  Polyion Complex Micelles with Reactive Aldehyde Groups on Their Surface from Plasmid DNA and End-Functionalized Charged Block Copolymers , 1999 .

[108]  A. Hoffman,et al.  Effects of branching and molecular weight of surface-bound poly(ethylene oxide) on protein rejection. , 1994, Journal of biomaterials science. Polymer edition.

[109]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[110]  Bruno M. Humbel,et al.  Preparation of Functional Silane-Stabilized Gold Colloids in the (Sub)nanometer Size Range , 1997 .

[111]  A. Eisenberg,et al.  Size Control of Nanoparticles in Semiconductor-Polymer Composites. 2. Control via Sizes of Spherical Ionic Microdomains in Styrene-Based Diblock Ionomers , 1995 .

[112]  Atsushi Harada,et al.  Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block Copolymers with Poly(ethylene glycol) Segments , 1995 .

[113]  Y. Nagasaki,et al.  Primary amino-terminal heterobifunctional poly(ethylene oxide). Facile synthesis of poly(ethylene oxide) with a primary amino group at one end and a hydroxyl group at the other end. , 1995, Bioconjugate chemistry.

[114]  Ryutaro Ogawa,et al.  Synthesis of Heterotelechelic Poly(ethylene glycol) Macromonomers. Preparation of Poly(ethylene glycol) Possessing a Methacryloyl Group at One End and a Formyl Group at the Other End , 1997 .

[115]  Julie K. Lorenz,et al.  Surfactant−Semiconductor Interfaces: Perturbation of the Photoluminescence of Bulk Cadmium Selenide by Adsorption of Tri-n-octylphosphine Oxide as a Probe of Solution Aggregation with Relevance to Nanocrystal Stabilization , 1998 .

[116]  Kazunori Kataoka,et al.  Block copolymer micelles for delivery of gene and related compounds. , 2002, Advanced drug delivery reviews.