Computing Ellipsoidal Robust Forward Invariant Tubes for Nonlinear MPC

Abstract Min-max differential inequalities (DIs) can be used to characterize robust forward invariant tubes with convex cross-section for a large class of nonlinear control systems. The advantage of using set-propagation over other existing approaches for tube MPC is that they avoid the discretization of control policies. Instead, the conservatism of min-max DIs in tube MPC arises from the discretization of sets in the state-space, while the control law is never discretized and remains defined implicitly via the solution of a min-max optimization problem. The contribution of this paper is the development of a practical implementation of min-max DIs for tube MPC using ellipsoidal-tube enclosures. We illustrate these developments with a spring-mass-damper system.

[1]  Moritz Diehl,et al.  A Short Note on Constrained Linear Control Systems With Multiplicative Ellipsoidal Uncertainty , 2016, IEEE Transactions on Automatic Control.

[2]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[3]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[4]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems: Time varying case , 2009, Autom..

[5]  A. Kurzhanski,et al.  On the Theory of Trajectory Tubes — A Mathematical Formalism for Uncertain Dynamics, Viability and Control , 1993 .

[6]  David Q. Mayne,et al.  Robust model predictive control using tubes , 2004, Autom..

[7]  Jimmie D. Lawson,et al.  The Geometric Mean, Matrices, Metrics, and More , 2001, Am. Math. Mon..

[8]  Eric C. Kerrigan,et al.  Output feedback receding horizon control of constrained systems , 2007, Int. J. Control.

[9]  Manfred Morari,et al.  On real-time robust model predictive control , 2014, Autom..

[10]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[11]  Benoît Chachuat,et al.  Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs , 2015, J. Glob. Optim..

[12]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[13]  Moritz Diehl,et al.  Robust MPC via min-max differential inequalities , 2016, Autom..

[14]  Benoît Chachuat,et al.  Chebyshev model arithmetic for factorable functions , 2016, Journal of Global Optimization.

[15]  Manfred Morari,et al.  Infinite Horizon Performance Bounds for Uncertain Constrained Systems , 2013, IEEE Transactions on Automatic Control.

[16]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[17]  Angelika Bayer,et al.  Ellipsoidal Calculus For Estimation And Control , 2016 .

[18]  Xuhui Feng,et al.  Min-max Differential Inequalities for Polytopic Tube MPC , 2019, 2019 American Control Conference (ACC).

[19]  M. Berz,et al.  TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .

[20]  M. Kothare,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[21]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.