$ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations

In this paper, we study \begin{document}$ (\omega,\mathbb{T}) $\end{document} -periodic impulsive evolution equations via the operator semigroups theory in Banach spaces \begin{document}$ X $\end{document} , where \begin{document}$ \mathbb{T}: X\rightarrow X $\end{document} is a linear isomorphism. Existence and uniqueness of \begin{document}$ (\omega,\mathbb{T}) $\end{document} -periodic solutions results for linear and semilinear problems are obtained by Fredholm alternative theorem and fixed point theorems, which extend the related results for periodic impulsive differential equations.

[1]  Michal Fečkan,et al.  A General Class of Impulsive Evolution Equations , 2015 .

[2]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[3]  Charlie H. Cooke,et al.  The existence of periodic solutions to certain impulsive differential equations , 2002 .

[4]  D. O’Regan,et al.  A New Class of $$(\omega ,c)$$-Periodic Non-instantaneous Impulsive Differential Equations , 2020 .

[5]  Kok Lay Teo,et al.  Nonlinear impulsive systems on infinite dimensional spaces , 2003 .

[6]  Yong Li,et al.  Rotating periodic solutions of second order dissipative dynamical systems , 2015 .

[7]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[8]  (ω,c)$(\omega ,c)$-Pseudo periodic functions, first order Cauchy problem and Lasota–Wazewska model with ergodic and unbounded oscillating production of red cells , 2019, Boundary Value Problems.

[9]  B. Thompson,et al.  Forced Symmetric Oscillations , 2007 .

[10]  Liu Wenbin,et al.  Periodic solutions for evolution equations , 1999 .

[11]  D. Bainov,et al.  Impulsive Differential Equations: Periodic Solutions and Applications , 1993 .

[12]  M. Pinto,et al.  (ω,c)‐asymptotically periodic functions, first‐order Cauchy problem, and Lasota‐Wazewska model with unbounded oscillating production of red cells , 2019, Mathematical Methods in the Applied Sciences.

[13]  Martin Bohner,et al.  Impulsive differential equations: Periodic solutions and applications , 2015, Autom..

[14]  Chao Wang,et al.  Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales , 2014, Commun. Nonlinear Sci. Numer. Simul..

[15]  X. Xiang,et al.  Linear Impulsive Periodic System with Time-Varying Generating Operators on Banach Space , 2007 .