Educational Applications of Hierarchical Linear Models: A Review

The search for appropriate statistical methods for hierarchical, multilevel data has been a prominent theme in educational statistics over the past 15 years. As a result of this search, an important class of models, termed hierarchical linear models by this review, has emerged. In the paradigmatic application of such models, observations within each group (e.g., classroom or school) vary as a function of group-level or “microparameters.” However, these microparameters vary randomly across the population of groups as a function of “macroparameters.” Research interest has focused on estimation of both micro- and macroparameters. This paper reviews estimation theory and application of such models. Also, the logic of these methods is extended beyond the paradigmatic case to include research domains as diverse as panel studies, meta-analysis, and classical test theory. Microparameters to be estimated may be as diverse as means, proportions, variances, linear regression coefficients, and logit linear regression coefficients. Estimation theory is reviewed from Bayes and empirical Bayes viewpoints and the examples considered involve data sets with two levels of hierarchy.

[1]  J. Walsh Concerning the Effect of Intraclass Correlation on Certain Significance Tests , 1947 .

[2]  Cyril Burt,et al.  Fundamentals of Statistics. , 1948 .

[3]  W. S. Robinson Ecological correlations and the behavior of individuals. , 1950, International journal of epidemiology.

[4]  D. F. Morrison,et al.  Multivariate Statistical Methods , 1968 .

[5]  H. Hartley,et al.  Maximum-likelihood estimation for the mixed analysis of variance model. , 1967, Biometrika.

[6]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[7]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[8]  Dorothy T. Thayer,et al.  Bayesian inference and the classical test theory model: Reliability and true scores , 1971 .

[9]  R. G. Krutchkoff,et al.  Empirical Bayes Estimation , 1972 .

[10]  Melvin R. Novick,et al.  ESTIMATING MULTIPLE REGRESSIONS IN m GROUPS: A CROSS‐VALIDATION STUDY , 1972 .

[11]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[12]  Tom Leonard Bayesian methods for binomial data , 1972 .

[13]  A. F. Smith A General Bayesian Linear Model , 1973 .

[14]  Barr Rosenberg,et al.  Linear regression with randomly dispersed parameters , 1973 .

[15]  Melvin R. Novick,et al.  Further Cross-Validation Analysis of the Bayesian m-Group Regression Method1 , 1974 .

[16]  Tom Leonard A Bayesian Approach to the Linear Model with Unequal Variances , 1975 .

[17]  B. Efron,et al.  Data Analysis Using Stein's Estimator and its Generalizations , 1975 .

[18]  David A. Harville,et al.  Extension of the Gauss-Markov Theorem to Include the Estimation of Random Effects , 1976 .

[19]  Kazuo Shigemasu,et al.  Development and Validation of a Simplified m-Group Regression Model , 1976 .

[20]  Lee J. Cronbach,et al.  Research on Classrooms and Schools: Formulation of Questions, Design and Analysis. , 1976 .

[21]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[22]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[23]  B. Rosenshine,et al.  Teaching Styles and Pupil Progress , 1977 .

[24]  D. Rogosa Politics, Process, and Pyramids , 1978 .

[25]  N. Laird Empirical Bayes methods for two-way contingency tables , 1978 .

[26]  David Rogosa Using Empirical Bayes Techniques in the Law School Validity Studies: Comment , 1980 .

[27]  Donald B. Rubin,et al.  Using Empirical Bayes Techniques in the Law School Validity Studies , 1980 .

[28]  L. Poundie Burstein Chapter 4: The Analysis of Multilevel Data in Educational Research and Evaluation , 1980 .

[29]  D. Rubin Estimation in Parallel Randomized Experiments , 1981 .

[30]  David Lindley,et al.  Bayes Empirical Bayes , 1981 .

[31]  Murray Aitkin,et al.  Statistical Modelling of Data on Teaching Styles , 1981 .

[32]  D. Rubin,et al.  Estimation in Covariance Components Models , 1981 .

[33]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[34]  Nan M. Laird,et al.  Evaluating the Effect of Coaching on SAT Scores: A Meta-Analysis , 1983 .

[35]  C. Morris Parametric Empirical Bayes Inference: Theory and Applications , 1983 .

[36]  H. Weisberg,et al.  Empirical Bayes estimation of individual growth-curve parameters and their relationship to covariates. , 1983, Biometrics.

[37]  Barbara Entwisle,et al.  Contextual analysis through the multilevel linear model. , 1983 .

[38]  Donald B. Rubin,et al.  Some applications of Bayesian statistics to educational data , 1983 .

[39]  Ronald G. Stansfield,et al.  Sociological Methodology 1982 , 1983 .

[40]  J. Ware,et al.  Random-effects models for serial observations with binary response. , 1984, Biometrics.

[41]  R. N. Kackar,et al.  Approximations for Standard Errors of Estimators of Fixed and Random Effects in Mixed Linear Models , 1984 .

[42]  Samuel Leinhardt,et al.  Sociological Methodology 1983-1984. , 1984 .

[43]  G. Y. Wong,et al.  The Hierarchical Logistic Regression Model for Multilevel Analysis , 1985 .

[44]  Murray Aitkin,et al.  Variance Component Models with Binary Response: Interviewer Variability , 1985 .

[45]  Louise Ryan,et al.  Weighted Normal Plots , 1985 .

[46]  S. Raudenbush,et al.  Empirical Bayes Meta-Analysis , 1985 .

[47]  J. Ware Linear Models for the Analysis of Longitudinal Studies , 1985 .

[48]  Valerie E. Lee Multi-Level Causal Models for Social Class and Achievement. , 1986 .

[49]  M. Aitkin,et al.  Statistical Modelling Issues in School Effectiveness Studies , 1986 .

[50]  Melvin R. Novick,et al.  Bayesian Full Rank Marginalization for Two-Way Contingency Tables , 1986 .

[51]  H. Goldstein Multilevel mixed linear model analysis using iterative generalized least squares , 1986 .

[52]  Anthony S. Bryk,et al.  A Hierarchical Model for Studying School Effects , 1986 .

[53]  Anthony S. Bryk,et al.  Application of Hierarchical Linear Models to Assessing Change , 1987 .

[54]  N. Longford A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects , 1987 .

[55]  R. Tsutakawa,et al.  Estimation for the Rasch Model When Both Ability and Difficulty Parameters Are Random , 1987 .

[56]  S. Raudenbush,et al.  Examining Correlates of Diversity , 1987 .