Edge coloring planar graphs with two outerplanar subgraphs

The standard problem of edge coloring a graph with k colors is equivalent to partitioning the edge set of the graph into k matchings. Here edge coloring is generalized by replacing matchings with outerplanar graphs. We give a polynomial-time algorithm that edge colors any planar graph with two outerplanar subgraphs. Two is clearly minimal for the class of planar graphs.

[1]  Harold N. Gabow,et al.  Algorithms for edge coloring bipartite graphs , 1978, STOC '78.

[2]  Mihalis Yannakakis,et al.  Four pages are necessary and sufficient for planar graphs , 1986, Symposium on the Theory of Computing.

[3]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[4]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[5]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[6]  G. Chartrand,et al.  Graphs with Forbidden Subgraphs , 1971 .

[7]  Ian Holyer,et al.  The NP-Completeness of Some Edge-Partition Problems , 1981, SIAM J. Comput..

[8]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[9]  David G. Kirkpatrick,et al.  On the completeness of a generalized matching problem , 1978, STOC.

[10]  Charles J. Colbourn,et al.  Edge-packing of graphs and network reliability , 1988, Discret. Math..

[11]  Charles J. Colbourn,et al.  Partitioning the Edges of a Planar Graph into Two Partial K-Trees , 1988 .

[12]  David B. Shmoys,et al.  Efficient Parallel Algorithms for Edge Coloring Problems , 1987, J. Algorithms.

[13]  W. T. Tutte On the Problem of Decomposing a Graph into n Connected Factors , 1961 .

[14]  C. Nash-Williams Decomposition of Finite Graphs Into Forests , 1964 .

[15]  J. Edmonds Minimum partition of a matroid into independent subsets , 1965 .

[16]  F. Harary,et al.  Planar Permutation Graphs , 1967 .

[17]  Arnold L. Rosenberg,et al.  Embedding graphs in books: a layout problem with applications to VLSI design , 1985 .