Electronic structure of the negatively charged silicon-vacancy center in diamond

The negatively-charged silicon-vacancy (SiV$^-$) center in diamond is a promising single photon source for quantum communications and information processing. However, the center's implementation in such quantum technologies is hindered by contention surrounding its fundamental properties. Here we present optical polarization measurements of single centers in bulk diamond that resolve this state of contention and establish that the center has a $\langle111\rangle$ aligned split-vacancy structure with $D_{3d}$ symmetry. Furthermore, we identify an additional electronic level and evidence for the presence of dynamic Jahn-Teller effects in the center's 738 nm optical resonance.

[1]  P. Corkum,et al.  Journal of Physics B: atomic, molecular and optical physics , 2015 .

[2]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[3]  Yan-Kai Tzeng,et al.  Detection of a few metallo-protein molecules using color centers in nanodiamonds. , 2013, Nano letters.

[4]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[5]  Martin Fischer,et al.  Low-temperature investigations of single silicon vacancy colour centres in diamond , 2012, 1210.3201.

[6]  Kenji Watanabe,et al.  Chemical Vapor Deposition of 12C Isotopically Enriched Polycrystalline Diamond , 2012 .

[7]  Seattle,et al.  Production of oriented nitrogen-vacancy color centers in synthetic diamond , 2011, 1112.5757.

[8]  D. Twitchen,et al.  Optical properties of the neutral silicon split-vacancy center in diamond , 2011 .

[9]  S. Gsell,et al.  Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium , 2011, 1108.3743.

[10]  Silvano Donati,et al.  LASER & PHOTONICS REVIEWS , 2013 .

[11]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[12]  D. Twitchen,et al.  EPR of a defect in CVD diamond involving both silicon and hydrogen that shows preferential alignment , 2010 .

[13]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[14]  L. Rogers How far into the infrared can a colour centre in diamond emit , 2010 .

[15]  *Contributed equally to the work , 2010 .

[16]  P. Barclay,et al.  Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. , 2009, Physical review letters.

[17]  Jason M. Smith,et al.  Prospects for measurement‐based quantum computing with solid state spins , 2009, 0901.3092.

[18]  H-C Chang,et al.  Functionalized fluorescent nanodiamonds for biomedical applications. , 2009, Nanomedicine.

[19]  A. Müller Journal of Physics Condensed Matter , 2008 .

[20]  Hsiao-Yun Wu,et al.  Characterization and application of single fluorescent nanodiamonds as cellular biomarkers , 2007, Proceedings of the National Academy of Sciences.

[21]  New Journal of Physics The , 2007 .

[22]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[23]  H. Weinfurter,et al.  Single photon emission from SiV centres in diamond produced by ion implantation , 2006 .

[24]  D. Martin,et al.  Nanomedicine , 2005, BMJ.

[25]  K. Iakoubovskii Ni-vacancy defect in diamond detected by electron spin resonance , 2004 .

[26]  K. Iakoubovskii,et al.  Alignment of Ni- and Co-related centres during the growth of high-pressure high-temperature diamond , 2004 .

[27]  G. Burr,et al.  Journal of Applied Physics , 2004 .

[28]  P. Grangier,et al.  Photon antibunching in the fluorescence of individual color centers in diamond. , 2000, Optics letters.

[29]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[30]  G. Adriaenssens,et al.  Luminescence excitation spectra in diamond , 2000 .

[31]  S. S. Camargo,et al.  Diamond and Related Materials , 2000 .

[32]  Jones,et al.  The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex. , 1996, Physical review letters.

[33]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[34]  S. Rand,et al.  SITE SYMMETRY ANALYSIS OF THE 738 NM DEFECT IN DIAMOND , 1995 .

[35]  K. Thonke,et al.  Uniaxial stress and Zeeman splitting of the 1.681 eV optical center in a homoepitaxial CVD diamond film , 1995 .

[36]  Clark,et al.  Silicon defects in diamond. , 1995, Physical review. B, Condensed matter.

[37]  Sauér,et al.  1.681-eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films. , 1994, Physical review. B, Condensed matter.

[38]  G. Scarsbrook,et al.  The annealing of radiation damage in De Beers colourless CVD diamond , 1994 .

[39]  Characteristics and origin of the 1.681 eV luminescence center in chemical‐vapor‐deposited diamond films , 1993 .

[40]  C. D. Clark,et al.  The 1.681 eV centre in polycrystalline diamond , 1991 .

[41]  A. T. Collins The polarised adsorption and cathodoluminescence associated with the 1.40 eV centre in synthetic diamond , 1989 .

[42]  Physical Review Letters 63 , 1989 .

[43]  G. Davies REVIEW ARTICLE: The Jahn-Teller effect and vibronic coupling at deep levels in diamond , 1981 .

[44]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[45]  A. Stoneham Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors , 1976 .

[46]  C. Norris,et al.  Photoluminescence associated with the 1.673, 1.944 and 2.498 eV centres in diamond , 1971 .

[47]  M. Tinkham Group Theory and Quantum Mechanics , 1964 .

[48]  高橋 秀俊,et al.  Japanese Journal of Applied Physics , 1962, Nature.

[49]  J. A. Crowther Reports on Progress in Physics , 1941, Nature.

[50]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[51]  October I Physical Review Letters , 2022 .

[52]  Physics Reports , 2022 .