Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty

Atomic oxygen (O) is a fundamental component in chemical aeronomy of Earth's mesosphere and lower thermosphere region extending from approximately 50 km to over 100 km in altitude. Atomic oxygen is notoriously difficult to measure, especially with remote sensing techniques from orbiting satellite sensors. It is typically inferred from measurements of the ozone concentration in the day or from measurements of the Meinel band emission of the hydroxyl radical (OH) at night. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED) satellite measures OH emission and ozone for the purpose of determining the O‐atom concentration. In this paper, we present the algorithms used in the derivation of day and night atomic oxygen from these measurements. We find excellent consistency between the day and night O‐atom concentrations from daily to annual time scales. We also examine in detail the collisional relaxation of the highly vibrationally excited OH molecule at night measured by SABER. Large rate coefficients for collisional removal of vibrationally excited OH molecules by atomic oxygen are consistent with the SABER observations if the deactivation of OH(9) proceeds solely by collisional quenching. An uncertainty analysis of the derived atomic oxygen is also given. Uncertainty in the rate coefficient for recombination of O and molecular oxygen is shown to be the largest source of uncertainty in the derivation of atomic oxygen day or night.

[1]  V. L. Orkin,et al.  Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 , 2015 .

[2]  Stanley P. Sander,et al.  NASA Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies , 2014 .

[3]  R. E. Thompson,et al.  Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region , 2013 .

[4]  Yajun Zhu,et al.  Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region , 2012 .

[5]  Gregory P Smith,et al.  Collisional removal of OH(X2Π, υ = 9) by O, O2, O3, N2, and CO2 , 2011 .

[6]  R. Gattinger,et al.  Atomic oxygen densities retrieved from Optical Spectrograph and Infrared Imaging System observations of O2 A‐band airglow emission in the mesosphere and lower thermosphere , 2011 .

[7]  D. Marsh,et al.  Temporal variations of atomic oxygen in the upper mesosphere from SABER , 2010 .

[8]  J. Russell,et al.  Sounding of the Atmosphere using Broadband Emission Radiometry observations of daytime mesospheric O2(1Δ) 1.27 μm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates , 2007 .

[9]  G. Groenenboom,et al.  Theoretical transition probabilities for the OH Meinel system. , 2007, The Journal of chemical physics.

[10]  James M. Russell,et al.  SABER observations of the OH Meinel airglow variability near the mesopause , 2006 .

[11]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[12]  J. Russell,et al.  Correction to “Energy transport in the thermosphere during the solar storms of April 2002” , 2005 .

[13]  A. Khachatrian,et al.  Vibrational relaxation of OH by oxygen atoms , 2005 .

[14]  R. P. Lowe,et al.  Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: Local time–latitude dependence , 2005 .

[15]  Gary J. Rottman,et al.  The SORCE Mission , 2005 .

[16]  K. Jucks,et al.  Observations of the O(3P) fine structure line at 63 μm in the upper mesosphere and lower thermosphere , 2004 .

[17]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[18]  James M. Russell,et al.  Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 µm Earth Limb Emission under non‐LTE conditions , 2001 .

[19]  M. Kaufmann,et al.  A global measurement of lower thermosphere atomic oxygen densities , 2000 .

[20]  Martin G. Mlynczak,et al.  A new perspective on the molecular oxygen and hydroxyl airglow emissions , 1999 .

[21]  Joseph J. Tansock,et al.  Overview of the SABER experiment and preliminary calibration results , 1999, Optics & Photonics.

[22]  A. Goldman,et al.  Updated line parameters for OH X2II–X2II (ν′',ν′) Transitions , 1998 .

[23]  Steven M. Adler-Golden,et al.  Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements , 1997 .

[24]  Martin G. Mlynczak,et al.  On the utility of the molecular oxygen dayglow emissions as proxies for middle atmospheric ozone , 1995 .

[25]  M. Mlynczak,et al.  A detailed evaluation of the heating efficiency in the middle atmosphere , 1993 .

[26]  S. R. Drayson,et al.  RAPID COMPUTATION OF THE RADIATIVE ABSORPTION RATE IN THE v3 MODE OF MESOSPHERIC AND LOWER THERMOSPHERIC OZONE , 1991 .

[27]  I. Mcdade The altitude dependence of the OH(X2Π) vibrational distribution in the nightglow: Some model expectations , 1991 .

[28]  D. Siskind,et al.  A comparison of measurements of the oxygen nightglow and atomic oxygen in the lower thermosphere , 1991 .

[29]  J. Menard,et al.  Vibrational relaxation of ozone in O3–O2 and O3–N2 gas mixtures from infrared double‐resonance measurements , 1991 .

[30]  David J. Nesbitt,et al.  H+O3 Fourier‐transform infrared emission and laser absorption studies of OH (X 2Π) radical: An experimental dipole moment function and state‐to‐state Einstein A coefficients , 1990 .

[31]  S. R. Drayson,et al.  Calculation of infrared limb emission by ozone in the terrestrial middle atmosphere. 1. Source functions , 1990 .

[32]  S. R. Drayson,et al.  Calculation of infrared limb emission by ozone in the terrestrial middle atmosphere: 2. Emission calculations , 1990 .

[33]  E. Llewellyn The concentration of atomic oxygen in the mesosphere and thermosphere , 1988 .

[34]  D. Murtagh,et al.  Eton 5: Simultaneous rocket measurements of the OH meinel Δυ = 2 sequence and (8,3) band emission profiles in the nightglow , 1987 .

[35]  W. Pendleton,et al.  Mesospheric minor species determinations from rocket and ground-based i.r. measurements , 1987 .

[36]  I. Mcdade,et al.  Kinetic parameters related to sources and sinks of vibrationally excited OH in the nightglow , 1987 .

[37]  J. Kiehl,et al.  Evidence for nonlocal thermodynamic equilibrium in the ν3 mode of mesospheric ozone , 1986 .

[38]  Pavel Rosmus,et al.  Theoretical transition probabilities for the OH Meinel system , 1986 .

[39]  D. B. Jenkins,et al.  The determination of the atomic oxygen concentration and associated parameters in the lower ionosphere , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  G. Flynn,et al.  Deactivation of vibrationally excited ozone by O(3P) atoms , 1976 .

[41]  R. Good Determination of atomic oxygen density from rocket borne measurement of hydroxyl airglow , 1976 .

[42]  R. Young,et al.  Measurement of atomic oxygen in the lower ionosphere using a rocket-borne resonance lamp , 1974, Nature.

[43]  Ian C. VcDADE THE ALTITUDE DEPENDENCE OF THE OH ( X ’ II ) VIBRATIONAL DISTRIBUTION IN THE NIGHTGLOW : SOME MODEL EXPECTATIONS , 2002 .

[44]  F. Martín Emisiones infrarrojas del ozono en la atmósfera de La Tierra , 1999 .

[45]  K. Grossmann,et al.  Thermal infrared measurements in the middle and upper atmosphere , 1997 .

[46]  S. Solomon,et al.  Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species , 1991 .

[47]  Ian W. M. Smith,et al.  Infrared chemiluminescence using a SISAM spectrometer. Reactions producing vibrationally excited HF , 1987 .

[48]  J. E. Spencer,et al.  Some Reactions of OH(v = 1) , 1977 .