Plasmon modes of a silver thin film taper probed with STEM-EELS.

By focusing propagating surface plasmons, electromagnetic energy can be delivered to nanoscale volumes. In this context, we employ electron energy loss spectroscopy in a scanning transmission electron microscope to characterize the full plasmonic mode spectrum of a silver thin film tapered to a sharp tip. We show that the plasmon modes can be ordered in film and edge modes and corroborate our assignment through supplementary numerical simulations. In particular, we find that the focused plasmon field at the taper tip is fueled by edge modes.

[1]  Ulrich Hohenester,et al.  High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy , 2009 .

[2]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[3]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[4]  F. J. García de abajo,et al.  Probing the photonic local density of states with electron energy loss spectroscopy. , 2007, Physical review letters.

[5]  A. Hohenau,et al.  Dark Plasmonic Breathing Modes in Silver Nanodisks , 2012, Nano letters.

[6]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[7]  Ulrich Hohenester,et al.  Simulating electron energy loss spectroscopy with the MNPBEM toolbox , 2013, Comput. Phys. Commun..

[8]  Sergey I. Bozhevolnyi,et al.  Nanofocusing of electromagnetic radiation , 2013, Nature Photonics.

[9]  P. Midgley,et al.  Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles , 2013, Nature.

[10]  S. Linden,et al.  Real space imaging of nano-tip plasmons using electron energy-loss spectroscopy , 2015, 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS).

[11]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[12]  A. Hohenau,et al.  Electron beam lithography, a helpful tool for nanooptics , 2006 .

[13]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[14]  Dmitri K. Gramotnev,et al.  Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate , 2007 .

[15]  A. Hohenau,et al.  Universal dispersion of surface plasmons in flat nanostructures , 2014, Nature Communications.

[16]  P. Batson,et al.  Vibrational spectroscopy in the electron microscope , 2014, Nature.

[17]  Kh. V. Nerkararyan,et al.  Superfocusing of surface polaritons in the conical structure , 2000 .

[18]  Ewold Verhagen,et al.  Nanofocusing in laterally tapered plasmonic waveguides. , 2008, Optics express.

[19]  Ulrich Hohenester,et al.  MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles , 2011, Comput. Phys. Commun..

[20]  Christian Colliex,et al.  Mapping Surface Plasmons on a Single Metallic Nanoparticle , 2008 .

[21]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[22]  Harald Ditlbacher,et al.  Electron-energy-loss spectra of plasmonic nanoparticles. , 2009, Physical review letters.

[23]  Markus B. Raschke,et al.  Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy , 2010 .

[24]  Sergey I. Bozhevolnyi,et al.  Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration , 2008 .

[25]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[26]  Albert Polman,et al.  Imaging the hidden modes of ultrathin plasmonic strip antennas by cathodoluminescence. , 2011, Nano letters.