Auxetic behaviour from stretching connected squares
暂无分享,去创建一个
Ruben Gatt | Daphne Attard | Joseph N. Grima | R. Gatt | P. Farrugia | D. Attard | Pierre S. Farrugia | Christian Caruana | Christian Caruana
[1] Ruben Gatt,et al. Auxetic behaviour from rotating semi‐rigid units , 2007 .
[2] K. Wojciechowski,et al. Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers , 1987 .
[3] Massimo Ruzzene,et al. Global and local linear buckling behavior of a chiral cellular structure , 2005 .
[4] K. Wojciechowski. Non-chiral, molecular model of negative Poisson ratio in two dimensions , 2003 .
[5] Joseph N. Grima,et al. Networked calix[4]arene polymers with unusual mechanical properties. , 2005, Chemical communications.
[6] Joseph N. Grima,et al. Molecular modelling of the deformation mechanisms acting in auxetic silica , 2004 .
[7] Joseph N. Grima,et al. Auxetic behavior from rotating triangles , 2006 .
[8] Joseph N. Grima,et al. Do Zeolites Have Negative Poisson's Ratios? , 2000 .
[9] Roderic S. Lakes,et al. Nonlinear Analysis of the Poisson's Ratio of Negative Poisson's Ratio Foams , 1995 .
[10] J. Parise,et al. Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio , 1992, Science.
[11] Joseph N. Grima,et al. On the origin of auxetic behaviour in the silicate α-cristobalite , 2005 .
[12] Robert Bruce Lindsay,et al. Physical Properties of Crystals , 1957 .
[13] Gaoyuan Wei. Design of auxetic polymer self‐assemblies , 2005 .
[14] Kenneth E. Evans,et al. Microstructural modelling of auxetic microporous polymers , 1995, Journal of Materials Science.
[15] Joseph N. Grima,et al. Auxetic behavior from rotating squares , 2000 .
[16] B. D. Caddock,et al. Microporous materials with negative Poisson's ratios. II. Mechanisms and interpretation , 1989 .
[17] A. Authier,et al. Physical properties of crystals , 2007 .
[18] Kenneth E. Evans,et al. Auxetic foams: Modelling negative Poisson's ratios , 1994 .
[19] Y. Ishibashi,et al. A Microscopic Model of a Negative Poisson's Ratio in Some Crystals , 2000 .
[20] Joseph N. Grima,et al. An alternative explanation for the negative Poisson's ratios in auxetic foams , 2005 .
[21] Andrew Alderson,et al. Molecular origin of auxetic behavior in tetrahedral framework silicates. , 2002, Physical review letters.
[22] Kogure,et al. Mechanism for negative poisson ratios over the alpha- beta transition of cristobalite, SiO2: A molecular-dynamics study , 2000, Physical review letters.
[23] Joseph N. Grima,et al. On the atomic level deformations in the auxetic zeolite natrolite , 2008 .
[24] A. F. Wells,et al. Structural Inorganic Chemistry , 1971, Nature.
[25] Hajime Kimizuka,et al. Molecular-dynamics study of the high-temperature elasticity of quartz above the α-β phase transition , 2003 .
[26] M. Ashby,et al. The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[27] Joseph N. Grima,et al. An alternative explanation for the negative Poisson's ratios in α-cristobalite , 2006 .
[28] R. Baughman,et al. Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.
[29] Kenneth E. Evans,et al. Indentation Resilience of Conventional and Auxetic Foams , 1998 .
[30] R. Lakes,et al. Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .
[31] Ray H. Baughman,et al. Crystalline networks with unusual predicted mechanical and thermal properties , 1993, Nature.
[32] Joseph N. Grima,et al. Self expanding molecular networks , 2000 .
[33] Chelikowsky,et al. Structural properties of nine silica polymorphs. , 1992, Physical review. B, Condensed matter.
[34] Robert Almgren,et al. An isotropic three-dimensional structure with Poisson's ratio =−1 , 1985 .
[35] K. E. EVANS,et al. Molecular network design , 1991, Nature.
[36] A. Griffin,et al. Toward Negative Poisson Ratio Polymers Through Molecular Design , 1998 .
[37] Joseph N. Grima,et al. Modelling the deformation mechanisms, structure–property relationships and applications of auxetic nanomaterials , 2005 .
[38] Wojciechowski,et al. Negative Poisson ratio in a two-dimensional "isotropic" solid. , 1989, Physical review. A, General physics.
[39] Joseph N. Grima,et al. A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model , 2000 .
[40] P. Sinha,et al. Thermal shocks in composite plates: a coupled thermoelastic finite element analysis , 1996 .
[41] Kenneth E. Evans,et al. Modelling concurrent deformation mechanisms in auxetic microporous polymers , 1997 .
[42] Joseph N. Grima,et al. Auxetic behaviour from rotating rigid units , 2005 .
[43] R. Lakes. Foam Structures with a Negative Poisson's Ratio , 1987, Science.