Auxetic behaviour from stretching connected squares

Systems with negative Poisson’s ratio (auxetic) exhibit the unusual characteristic of getting fatter when stretched and thinner when compressed. Such behaviour is a scale-independent property and is the result of a cooperation between the internal geometry of the system and the way this deforms when uniaxially stretched. Here, we analyse the anisotropic mechanical properties for a system constructed from connected squares which can deform through changes in length of the sides of the squares (idealised ‘stretching squares’ model). In particular, we show that this system may exhibit a negative Poisson’s ratio which depends on the angle between the squares and the direction of loading but is independent of the size of the squares which suggests that this model may be implemented at any scale of structure including the micro- and nano-level. We also show how this model compares and complements the existing ‘rotating squares’ model which also works on a system with the same geometric characteristics and which has been shown to lead to auxeticity in various classes of materials.

[1]  Ruben Gatt,et al.  Auxetic behaviour from rotating semi‐rigid units , 2007 .

[2]  K. Wojciechowski,et al.  Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers , 1987 .

[3]  Massimo Ruzzene,et al.  Global and local linear buckling behavior of a chiral cellular structure , 2005 .

[4]  K. Wojciechowski Non-chiral, molecular model of negative Poisson ratio in two dimensions , 2003 .

[5]  Joseph N. Grima,et al.  Networked calix[4]arene polymers with unusual mechanical properties. , 2005, Chemical communications.

[6]  Joseph N. Grima,et al.  Molecular modelling of the deformation mechanisms acting in auxetic silica , 2004 .

[7]  Joseph N. Grima,et al.  Auxetic behavior from rotating triangles , 2006 .

[8]  Joseph N. Grima,et al.  Do Zeolites Have Negative Poisson's Ratios? , 2000 .

[9]  Roderic S. Lakes,et al.  Nonlinear Analysis of the Poisson's Ratio of Negative Poisson's Ratio Foams , 1995 .

[10]  J. Parise,et al.  Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio , 1992, Science.

[11]  Joseph N. Grima,et al.  On the origin of auxetic behaviour in the silicate α-cristobalite , 2005 .

[12]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[13]  Gaoyuan Wei Design of auxetic polymer self‐assemblies , 2005 .

[14]  Kenneth E. Evans,et al.  Microstructural modelling of auxetic microporous polymers , 1995, Journal of Materials Science.

[15]  Joseph N. Grima,et al.  Auxetic behavior from rotating squares , 2000 .

[16]  B. D. Caddock,et al.  Microporous materials with negative Poisson's ratios. II. Mechanisms and interpretation , 1989 .

[17]  A. Authier,et al.  Physical properties of crystals , 2007 .

[18]  Kenneth E. Evans,et al.  Auxetic foams: Modelling negative Poisson's ratios , 1994 .

[19]  Y. Ishibashi,et al.  A Microscopic Model of a Negative Poisson's Ratio in Some Crystals , 2000 .

[20]  Joseph N. Grima,et al.  An alternative explanation for the negative Poisson's ratios in auxetic foams , 2005 .

[21]  Andrew Alderson,et al.  Molecular origin of auxetic behavior in tetrahedral framework silicates. , 2002, Physical review letters.

[22]  Kogure,et al.  Mechanism for negative poisson ratios over the alpha- beta transition of cristobalite, SiO2: A molecular-dynamics study , 2000, Physical review letters.

[23]  Joseph N. Grima,et al.  On the atomic level deformations in the auxetic zeolite natrolite , 2008 .

[24]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[25]  Hajime Kimizuka,et al.  Molecular-dynamics study of the high-temperature elasticity of quartz above the α-β phase transition , 2003 .

[26]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  Joseph N. Grima,et al.  An alternative explanation for the negative Poisson's ratios in α-cristobalite , 2006 .

[28]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[29]  Kenneth E. Evans,et al.  Indentation Resilience of Conventional and Auxetic Foams , 1998 .

[30]  R. Lakes,et al.  Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .

[31]  Ray H. Baughman,et al.  Crystalline networks with unusual predicted mechanical and thermal properties , 1993, Nature.

[32]  Joseph N. Grima,et al.  Self expanding molecular networks , 2000 .

[33]  Chelikowsky,et al.  Structural properties of nine silica polymorphs. , 1992, Physical review. B, Condensed matter.

[34]  Robert Almgren,et al.  An isotropic three-dimensional structure with Poisson's ratio =−1 , 1985 .

[35]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[36]  A. Griffin,et al.  Toward Negative Poisson Ratio Polymers Through Molecular Design , 1998 .

[37]  Joseph N. Grima,et al.  Modelling the deformation mechanisms, structure–property relationships and applications of auxetic nanomaterials , 2005 .

[38]  Wojciechowski,et al.  Negative Poisson ratio in a two-dimensional "isotropic" solid. , 1989, Physical review. A, General physics.

[39]  Joseph N. Grima,et al.  A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model , 2000 .

[40]  P. Sinha,et al.  Thermal shocks in composite plates: a coupled thermoelastic finite element analysis , 1996 .

[41]  Kenneth E. Evans,et al.  Modelling concurrent deformation mechanisms in auxetic microporous polymers , 1997 .

[42]  Joseph N. Grima,et al.  Auxetic behaviour from rotating rigid units , 2005 .

[43]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.