Positivity results on ribbon Schur function differences

There is considerable current interest in determining when the difference of two skew Schur functions is Schur positive. We consider the posets that result from ordering skew diagrams according to Schur positivity, before focussing on the convex subposets corresponding to ribbons. While the general solution for ribbon Schur functions seems out of reach at present, we determine necessary and sufficient conditions for multiplicity-free ribbons, i.e. those whose expansion as a linear combination of Schur functions has all coefficients either zero or one. In particular, we show that the poset that results from ordering such ribbons according to Schur positivity is essentially a product of two chains.

[1]  Trevor A. Welsh,et al.  Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes , 2007, 0706.3253.

[2]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[3]  Alain Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .

[4]  Christian Gutschwager On Multiplicity-Free Skew Characters and the Schubert Calculus , 2006 .

[5]  Peter R. W. McNamara Necessary conditions for Schur-positivity , 2007, 0706.1800.

[6]  Victor Reiner,et al.  Coincidences among skew Schur functions , 2006 .

[7]  George Markowsky,et al.  Primes, irreducibles and extremal lattices , 1992 .

[8]  Thomas Lam,et al.  Schur positivity and Schur log-concavity , 2005 .

[10]  W. Fulton Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.

[11]  John R. Stembridge,et al.  Multiplicity-Free Products of Schur Functions , 2001 .

[12]  Moritz Beckmann,et al.  Young tableaux , 2007 .

[13]  Stephanie van Willigenburg,et al.  Towards a Combinatorial Classification of Skew Schur Functions , 2006 .

[14]  Alexander Yong,et al.  Multiplicity-Free Schubert Calculus , 2010, Canadian Mathematical Bulletin.

[15]  Hugh Thomas An Analogue of Distributivity for Ungraded Lattices , 2006, Order.

[16]  Riccardo Biagioli,et al.  Inequalities between Littlewood-Richardson coefficients , 2006, J. Comb. Theory, Ser. A.

[17]  L. Billera,et al.  Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions , 2004 .

[18]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[19]  Anatol N. Kirillov An Invitation to the Generalized Saturation Conjecture , 2004 .

[20]  William Fulton,et al.  Eigenvalues, singular values, and Littlewood-Richardson coefficients , 2003 .

[21]  Andrei Okounkov,et al.  Log-Concavity of Multiplicities with Application to Characters ofU(∞)☆ , 1997 .

[22]  R. Howe,et al.  Perspectives on invariant theory : Schur duality, multiplicity-free actions and beyond , 1995 .