The effect of compact object spin on the search for gravitational waves from binary neutron star and neutron star-black hole mergers

In this dissertation we study gravitational-wave searches for binary neutron star and neutron star black hole coalescences. We determine the accuracy of postNewtonian approximations as gravitational-wave templates in matched-filter based searches for NSBH mergers. We test a geometric method to generate template banks for BNS and NSBH mergers where the components have intrinsic spin, and estimate the sensitivity to astrophysical sources of searches that use these banks during Advanced LIGO. We explore simplifications and optimizations to the search pipeline used during S6/VSR2,3 gravitational-wave searches. We investigate methods for regenerating template banks as the noise behavior of a detector changes over time. We further investigate changes to the algorithm for determining coincidence between candidates from multiple-detectors. Finally, we develop a focused search for binary neutron stars, and test improvements to its configuration using LIGO detector data from the most recent science run. THE EFFECT OF COMPACT OBJECT SPIN ON THE SEARCH FOR GRAVITATIONAL WAVES FROM BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS

[1]  T. Adams Low latency search for compact binary coalescences using MBTA , 2015, 1507.01787.

[2]  D. J. Hofman,et al.  The Advanced Virgo detector , 2015 .

[3]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[4]  Duncan A. Brown,et al.  Accuracy and precision of gravitational-wave models of inspiraling neutron star – black hole binaries with spin : comparison with numerical relativity in the low-frequency regime , 2015 .

[5]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[6]  Thibault Damour,et al.  New effective-one-body description of coalescing nonprecessing spinning black-hole binaries , 2014, 1406.6913.

[7]  Alexander H. Nitz,et al.  Implementing a search for aligned-spin neutron star - black hole systems with advanced ground based gravitational wave detectors , 2014, 1405.6731.

[8]  Michael Boyle,et al.  Effective-one-body model for black-hole binaries with generic mass ratios and spins , 2013, Physical Review D.

[9]  John T. Whelan,et al.  Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data , 2013, 1310.5633.

[10]  Extracting equation of state parameters from black hole-neutron star mergers: aligned-spin black holes and a preliminary waveform model , 2013, 1303.6298.

[11]  P. Ajith,et al.  Effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins , 2012, 1210.6666.

[12]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[13]  D. Keppel Metrics for multi-detector template placement in searches for short-duration nonprecessing inspiral gravitational-wave signals , 2013, 1307.4158.

[14]  Duncan A. Brown,et al.  Accuracy of gravitational waveform models for observing neutron-star--black-hole binaries in Advanced LIGO , 2013, 1307.1757.

[15]  A. Lundgren,et al.  Parameter space metric for 3.5 post-Newtonian gravitational-waves from compact binary inspirals , 2013, 1305.5381.

[16]  Cosmology,et al.  A single-spin precessing gravitational wave in closed form , 2013, 1304.3332.

[17]  J. K. Blackburn,et al.  Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network , 2013, 1304.1775.

[18]  J. K. Blackburn,et al.  Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories , 2013 .

[19]  S. Marsat,et al.  Next-to-next-to-leading order spin–orbit effects in the gravitational wave flux and orbital phasing of compact binaries , 2013, 1303.7412.

[20]  A. Lundgren,et al.  Effect of sine-Gaussian glitches on searches for binary coalescence , 2013, 1304.0008.

[21]  D. Keppel The balancing act of template bank construction: inspiral waveform template banks for gravitational-wave detectors and optimizations at fixed computational cost , 2013, 1303.2005.

[22]  Chris L. Fryer,et al.  WHEN CAN GRAVITATIONAL-WAVE OBSERVATIONS DISTINGUISH BETWEEN BLACK HOLES AND NEUTRON STARS? , 2013, 1301.5616.

[23]  S. Marsat,et al.  Next-to-next-to-leading order spin–orbit effects in the near-zone metric and precession equations of compact binaries , 2012, 1212.5520.

[24]  Duncan A. Brown,et al.  Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors , 2012, 1211.6184.

[25]  S. Fairhurst,et al.  Degeneracy between mass and spin in black-hole-binary waveforms , 2012, 1211.0546.

[26]  S. Marsat,et al.  Next-to-next-to-leading order spin–orbit effects in the equations of motion of compact binary systems , 2012, 1210.4143.

[27]  F. Pannarale The Black Hole Remnant of Black Hole-Neutron Star Coalescing Binaries , 2012, 1208.5869.

[28]  C. Broeck,et al.  Search for Gravitational Waves from Binary Black Hole Inspiral, Merger and Ringdown in LIGO-Virgo Data from 2009–2010 , 2013 .

[29]  Thibault Damour,et al.  Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion , 2012, 1212.4357.

[30]  A. Buonanno,et al.  Third post-Newtonian spin-orbit effect in the gravitational radiation flux of compact binaries , 2012, 1210.0764.

[31]  Alexander H. Nitz,et al.  Detecting binary neutron star systems with spin in advanced gravitational-wave detectors , 2012, 1207.6406.

[32]  C. Broeck,et al.  SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3 , 2012, 1205.2216.

[33]  W. Farr,et al.  MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP? , 2012, 1205.1805.

[34]  Duncan A. Brown,et al.  Nonspinning searches for spinning binaries in ground-based detector data: Amplitude and mismatch predictions in the constant precession cone approximation , 2012, 1203.6060.

[35]  Michael Boyle,et al.  Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms , 2012, 1202.0790.

[36]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[37]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[38]  D. Holz,et al.  COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.

[39]  T. Hayler,et al.  Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts , 2011, 1109.3498.

[40]  Masaru Shibata,et al.  Coalescence of Black Hole-Neutron Star Binaries , 2011, Living reviews in relativity.

[41]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[42]  P. Ajith Addressing the spin question in gravitational-wave searches: Waveform templates for inspiralling compact binaries with nonprecessing spins , 2011, 1107.1267.

[43]  A. Buonanno,et al.  Tail-induced spin-orbit effect in the gravitational radiation of compact binaries , 2011, 1104.5659.

[44]  W. Farr,et al.  SPIN TILTS IN THE DOUBLE PULSAR REVEAL SUPERNOVA SPIN ANGULAR-MOMENTUM PRODUCTION , 2011, 1104.5001.

[45]  T. Hayler,et al.  Search for gravitational waves from binary black hole inspiral, merger and ringdown , 2011, 1102.3781.

[46]  S. Fairhurst,et al.  A coherent triggered search for single-spin compact binary coalescences in gravitational wave data , 2011, 1101.1459.

[47]  L. Lin,et al.  THE SPIN PARAMETER OF UNIFORMLY ROTATING COMPACT STARS , 2010, 1011.3563.

[48]  I. Mandel,et al.  THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.

[49]  E. Berger,et al.  The Environments of Short-Duration Gamma-Ray Bursts and Implications for their Progenitors , 2010, 1005.1068.

[50]  T. Hayler,et al.  Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 , 2010 .

[51]  K. S. Thorne,et al.  Calibration of the LIGO gravitational wave detectors in the fifth science run , 2010, 1007.3973.

[52]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[53]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[54]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[55]  T. Hayler,et al.  SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN , 2010, 1001.0165.

[56]  M. Duez,et al.  Numerical relativity confronts compact neutron star binaries: a review and status report , 2009, 0912.3529.

[57]  Yi Pan,et al.  Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes , 2009, 0912.3466.

[58]  Richard O'Shaughnessy,et al.  Compact binary coalescences in the band of ground-based gravitational-wave detectors , 2009, 0912.1074.

[59]  B. S. Sathyaprakash,et al.  Stochastic template placement algorithm for gravitational wave data analysis , 2009, 0908.2090.

[60]  Ulf Assarsson,et al.  Efficient stream compaction on wide SIMD many-core architectures , 2009, High Performance Graphics.

[61]  et al,et al.  Search for gravitational-wave bursts in the first year of the fifth LIGO science run , 2009, 0905.0020.

[62]  Development of a Physical-Template Search for Gravitational Waves from Spinning Compact-Object Binaries with LIGO. , 2009 .

[63]  Duncan A. Brown,et al.  Template banks to search for compact binaries with spinning components in gravitational wave data , 2009, 0904.1715.

[64]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[65]  Laeff,et al.  STELLAR-MASS BLACK HOLE SPIN CONSTRAINTS FROM DISK REFLECTION AND CONTINUUM MODELING , 2009, 0902.2840.

[66]  Alexei V. Filippenko,et al.  On IC 10 X-1, the Most Massive Known Stellar-Mass Black Hole , 2008, 0802.2716.

[67]  S. Babak Building a stochastic template bank for detecting massive black hole binaries , 2008, 0801.4070.

[68]  E. al.,et al.  Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals , 2007, 0712.2050.

[69]  Joshua R. Smith,et al.  Implications for the origin of GRB 070201 from LIGO observations , 2007 .

[70]  T. Cokelaer Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals , 2007, 0706.4437.

[71]  Junwei Cao,et al.  A Case Study on the Use of Workflow Technologies for Scientific Analysis: Gravitational Wave Data Analysis , 2007, Workflows for e-Science, Scientific Workflows for Grids.

[72]  S. Bégin,et al.  Eight New Millisecond Pulsars in NGC 6440 and NGC 6441 , 2007, 0711.0925.

[73]  A. Buonanno,et al.  Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion , 2006, gr-qc/0605139.

[74]  B. S. Sathyaprakash,et al.  A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models , 2006, gr-qc/0604037.

[75]  M. M. Casey,et al.  Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries , 2006 .

[76]  S. McMillan,et al.  Short gamma-ray bursts from binary neutron star mergers in globular clusters , 2005, astro-ph/0512654.

[77]  LIGO Scientific Collaboration B. Abbott et. al,et al.  Search for gravitational waves from binary black hole inspirals in LIGO data , 2005, gr-qc/0509129.

[78]  A. Buonanno,et al.  Detecting gravitational waves from precessing binaries of spinning compact objects. II. Search implementation for low-mass binaries , 2005, gr-qc/0508064.

[79]  Duncan A Brown Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral , 2005 .

[80]  et al,et al.  Search for gravitational waves from galactic and extra-galactic binary neutron stars , 2005, gr-qc/0505041.

[81]  E. al.,et al.  Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005, gr-qc/0505042.

[82]  L. Gergely,et al.  Self-interaction spin effects in inspiralling compact binaries , 2005, astro-ph/0504538.

[83]  B. S. Sathyaprakash,et al.  Searching for gravitational waves from binary inspirals with LIGO , 2004, 0705.1572.

[84]  Martin M. Fejer,et al.  Analysis of LIGO data for gravitational waves from binary neutron stars , 2004 .

[85]  Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.

[86]  A. Buonanno,et al.  Quasiphysical family of gravity-wave templates for precessing binaries of spinning compact objects: Application to double-spin precessing binaries , 2004, gr-qc/0405090.

[87]  V. Kalogera,et al.  Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: Astrophysical Expectations and Detection Efficiency of "Spiky'' Templates. , 2003, gr-qc/0312084.

[88]  A. Buonanno,et al.  A physical template family for gravitational waves from precessing binaries of spinning compact objects: Application to single-spin binaries , 2003, gr-qc/0310034.

[89]  C. Kim,et al.  An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system , 2003, Nature.

[90]  A. Buonanno,et al.  Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit , 2002, gr-qc/0211087.

[91]  V. Kalogera,et al.  Searching for gravitational waves from the inspiral of precessing binary systems: New hierarchical scheme using “spiky” templates , 2002, gr-qc/0211075.

[92]  V. Kalogera,et al.  Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems. I. Reduction of Detection Efficiency , 2002 .

[93]  B. Iyer,et al.  Gravitational waves from inspiraling compact binaries: Energy flux to third post-Newtonian order , 2001, gr-qc/0105098.

[94]  B. Iyer,et al.  Gravitational-Wave Inspiral of Compact Binary Systems to 7/2 Post-Newtonian Order , 2001, gr-qc/0105099.

[95]  T. Damour,et al.  A Comparison of search templates for gravitational waves from binary inspiral , 2000, gr-qc/0010009.

[96]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[97]  L. Blanchet,et al.  Equations of motion of point particle binaries at the third postNewtonian order , 2000, gr-qc/0004009.

[98]  B. Owen,et al.  Gravitational waves from inspiraling compact binaries: Validity of the stationary-phase approximation to the Fourier transform , 1999, gr-qc/9901076.

[99]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[100]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[101]  D. Lorimer Binary and Millisecond Pulsars , 2005, Living reviews in relativity.

[102]  E. Poisson Gravitational waves from inspiraling compact binaries: The quadrupole-moment term , 1997, gr-qc/9709032.

[103]  Thomas A. Prince,et al.  Observations of Accreting Pulsars , 1997, astro-ph/9707125.

[104]  Construction of a template family for the detection of gravitational waves from coalescing binaries. , 1996, Physical review. D, Particles and fields.

[105]  Luc Blanchet,et al.  Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order , 1996, gr-qc/9602024.

[106]  B. Owen,et al.  Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.

[107]  B. Iyer Gravitational waves from inspiralling compact binaries , 1996 .

[108]  T. Apostolatos,et al.  Search templates for gravitational waves from precessing, inspiraling binaries. , 1995, Physical review. D, Particles and fields.

[109]  Blanchet,et al.  Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second-post-Newtonian order. , 1995, Physical review. D, Particles and fields.

[110]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[111]  Thorne,et al.  Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.

[112]  Wiseman,et al.  Spin effects in the inspiral of coalescing compact binaries. , 1992, Physical review. D, Particles and fields.

[113]  Flanagan,et al.  The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. , 1992, Physical review letters.

[114]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[115]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[116]  Bohdan Paczynski,et al.  Cosmological gamma-ray bursts , 1991 .

[117]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[118]  J. Weisberg,et al.  Gravitational waves from an orbiting pulsar. , 1981 .

[119]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[120]  Albert A. Mullin,et al.  Extraction of signals from noise , 1970 .

[121]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[122]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[123]  W. Bonnor,et al.  Gravitational Radiation , 1958, Nature.