Analysis and accurate numerical solutions of the integral equation derived from the linearized BGKW equation for the steady Couette flow

The integral equation for the flow velocity u ( x ; k ) in the steady Couette flow derived from the linearized Bhatnagar-Gross-Krook-Welander kinetic equation is studied in detail both theoretically and numerically in a wide range of the Knudsen number k between 0.003 and 100.0. First, it is shown that the integral equation is a Fredholm equation of the second kind in which the norm of the compact integral operator is less than 1 on L p for any 1 ? p ? ∞ and thus there exists a unique solution to the integral equation via the Neumann series. Second, it is shown that the solution is logarithmically singular at the endpoints. More precisely, if x = 0 is an endpoint, then the solution can be expanded as a double power series of the form ? n = 0 ∞ ? m = 0 ∞ c n , m x n ( x ln ? x ) m about x = 0 on a small interval x ? ( 0 , a ) for some a 0 . And third, a high-order adaptive numerical algorithm is designed to compute the solution numerically to high precision. The solutions for the flow velocity u ( x ; k ) , the stress P x y ( k ) , and the half-channel mass flow rate Q ( k ) are obtained in a wide range of the Knudsen number 0.003 ? k ? 100.0 ; and these solutions are accurate for at least twelve significant digits or better, thus they can be used as benchmark solutions.

[1]  Taku Ohwada,et al.  Numerical analysis of the plane Couette flow of a rarefied gas on the basis of the linearized Boltzmann equation for hard-sphere molecules , 1990 .

[2]  Yoshio Sone,et al.  Molecular gas dynamics , 2007 .

[3]  Carlo Cercignani,et al.  Variational Approach to Boundary‐Value Problems in Kinetic Theory , 1966 .

[4]  P. Welander,et al.  ON THE TEMPERATURE JUMP IN A RAREFIED GAS , 1954 .

[5]  John E. Sader,et al.  High accuracy numerical solutions of the Boltzmann Bhatnagar-Gross-Krook equation for steady and oscillatory Couette flows , 2012 .

[6]  James Bremer A fast direct solver for the integral equations of scattering theory on planar curves with corners , 2012, J. Comput. Phys..

[7]  Erlend Magnus Viggen,et al.  The Lattice Boltzmann Method , 2017 .

[8]  J. Helsing Solving integral equations on piecewise smooth boundaries using the RCIP method: a tutorial , 2012, 1207.6737.

[9]  Yonghao Zhang,et al.  Deterministic numerical solutions of the Boltzmann equation using the fast spectral method , 2013, J. Comput. Phys..

[10]  C. Cercignani Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations , 2000 .

[11]  A. MacLeod,et al.  Chebyshev expansions for Abramowitz functions , 1992 .

[12]  M. Junk,et al.  Asymptotic analysis of the lattice Boltzmann equation , 2005 .

[13]  Sudarshan K. Loyalka,et al.  Analytical Methods for Problems of Molecular Transport , 2007 .

[14]  E. A. Jackson,et al.  Boundary value problems in kinetic theory of gases , 1957 .

[15]  S. K. Loyalka,et al.  The Kramers problem: Velocity slip and defect for a hard sphere gas with arbitrary accommodation , 1990 .

[16]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[17]  Lei Wu,et al.  Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows , 2014, Journal of Fluid Mechanics.

[18]  Li-Shi Luo Comment on "Discrete Boltzmann equation for microfluidics". , 2004, Physical review letters.

[19]  Norman Yarvin,et al.  Generalized Gaussian Quadratures and Singular Value Decompositions of Integral Operators , 1998, SIAM J. Sci. Comput..

[20]  S. K. Loyalka,et al.  Some exact numerical results for the BGK model: Couette, Poiseuille and thermal creep flow between parallel plates , 1979 .

[21]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[22]  M. M. R. Williams,et al.  A review of the rarefied gas dynamics theory associated with some classical problems in flow and heat transfer , 2001 .

[23]  Manfred Krafczyk,et al.  Lattice Boltzmann Method for Computational Fluid Dynamics , 2010 .

[24]  D. Willis Comparison of Kinetic Theory Analyses of Linearized Couette Flow , 1962 .

[25]  C. E. Siewert,et al.  Unified solutions to classical flow problems based on the BGK model , 2001 .

[26]  Carlo Cercignani,et al.  Plane Poiseuille-Couette problem in micro-electro-mechanical systems applications with gas-rarefaction effects , 2006 .

[27]  François Coron,et al.  Derivation of Slip boundary conditions for the Navier-Stokes system from the Boltzmann equation , 1989 .

[28]  Paul J. Dellar,et al.  Lattice Boltzmann simulations of pressure-driven flows in microchannels using Navier-Maxwell slip boundary conditions , 2012 .

[29]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[30]  G. Folland Introduction to Partial Differential Equations , 1976 .

[31]  C. Cercignani,et al.  Numerical Evaluation of the Slip Coefficient , 1963 .

[32]  Vladimir Rokhlin,et al.  Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .

[33]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[34]  J. Maxwell,et al.  On Stresses in Rarified Gases Arising from Inequalities of Temperature , 2022 .

[35]  Li-Shi Luo,et al.  Accurate solution and approximations of the linearized BGK equation for steady Couette flow , 2015 .

[36]  Carlo Cercignani Plane Poiseuille flow according to the method of elementary solutions , 1965 .

[37]  S. K. Loyalka,et al.  Velocity profile in the Knudsen layer for the Kramer’s problem , 1975 .

[38]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[39]  Felix Sharipov,et al.  Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface , 2011 .

[40]  Li-Shi Luo,et al.  Lattice Boltzmann modeling of microchannel flow in slip flow regime , 2009, J. Comput. Phys..

[41]  Felix Sharipov,et al.  Data on Internal Rarefied Gas Flows , 1998 .

[42]  Robert V. Tompson,et al.  The velocity slip problem: Accurate solutions of the BGK model integral equation , 2009 .

[43]  Mikhail Naumovich Kogan,et al.  Rarefied Gas Dynamics , 1969 .

[44]  George Em Karniadakis,et al.  MICROFLOWS AND NANOFLOWS , 2005 .

[45]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[46]  R. Kress Linear Integral Equations , 1989 .

[47]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[48]  E. Atlee Jackson,et al.  Kinetic Models and the Linearized Boltzmann Equation , 1959 .

[49]  Yap Ying Wan,et al.  Rareed Gas Dynamics: Stokes' Second Problem , 2009 .

[50]  D. Hänel,et al.  Lattice-Boltzmann Methods — A New Tool in CFD , 2001 .

[51]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[52]  A. Pipkin,et al.  A Course on Integral Equations , 1991 .

[53]  Livio Gibelli,et al.  Velocity slip coefficients based on the hard-sphere Boltzmann equation , 2012 .

[54]  Carlo Cercignani,et al.  Cylindrical Couette Flow of a Rarefied Gas , 1967 .

[55]  Yoshio Sone,et al.  Kinetic Theory Analysis of the Linearized Rayleigh Problem , 1964 .

[56]  James Bremer,et al.  A Nonlinear Optimization Procedure for Generalized Gaussian Quadratures , 2010, SIAM J. Sci. Comput..

[57]  D. Roger Willis Theoretical Solutions to some Nearly Free Molecular Problems , 1960 .

[58]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[59]  Yoshio Sone,et al.  Molecular Gas Dynamics: Theory, Techniques, and Applications , 2006 .