Boundary condition considerations in lattice Boltzmann formulations of wetting binary fluids

We propose a new lattice Boltzmann numerical scheme for binary-fluid surface interactions. The new scheme combines the existing binary free energy lattice Boltzmann method [Swift et al., Phys. Rev. E 54 (1996)] and a new wetting boundary condition for diffuse interface methods in order to eliminate spurious variations in the order parameter at solid surfaces. We use a cubic form for the surface free energy density and also take into account the contribution from free energy in the volume when discretizing the wetting boundary condition. This allows us to eliminate the spurious variation in the order parameter seen in previous implementations. With the new scheme a larger range of equilibrium contact angles are possible to reproduce and capillary intrusion can be simulated at higher accuracy at lower resolution.

[1]  Ignacio Pagonabarraga,et al.  LUDWIG: A parallel Lattice-Boltzmann code for complex fluids , 2001 .

[2]  J. Yeomans,et al.  Lattice Boltzmann simulations of contact line motion. II. Binary fluids. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  A. Dupuis,et al.  Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces , 2004, Future Gener. Comput. Syst..

[4]  Paul Papatzacos,et al.  Macroscopic Two-phase Flow in Porous Media Assuming the Diffuse-interface Model at Pore Level , 2002 .

[5]  J. Timonen,et al.  Lattice-Boltzmann Simulation of Capillary Rise Dynamics , 2002 .

[6]  Q. Zou,et al.  On pressure and velocity boundary conditions for the lattice Boltzmann BGK model , 1995, comp-gas/9611001.

[7]  J. Yeomans,et al.  Contact line dynamics in binary lattice Boltzmann simulations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  John W. Cahn,et al.  Critical point wetting , 1977 .

[9]  Sauro Succi,et al.  Capillary filling using lattice Boltzmann equations: The case of multi-phase flows , 2007, 0707.0945.

[10]  P. Gennes Wetting: statics and dynamics , 1985 .

[11]  J. Timonen,et al.  Impalement transitions in droplets impacting microstructured superhydrophobic surfaces , 2008, 0807.4648.

[12]  Daniel H. Rothman,et al.  Immiscible cellular-automaton fluids , 1988 .

[13]  Shiyi Chen,et al.  A lattice Boltzmann model for multiphase fluid flows , 1993, comp-gas/9303001.

[14]  Vaughan R. Pratt,et al.  Direct least-squares fitting of algebraic surfaces , 1987, SIGGRAPH.

[15]  C. Pooley,et al.  Eliminating spurious velocities in the free-energy lattice Boltzmann method. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[19]  Haibo Huang,et al.  Evaluation of three lattice Boltzmann models for multiphase flows in porous media , 2011, Comput. Math. Appl..

[20]  Jens Harting,et al.  Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels , 2006 .

[21]  J. Yeomans,et al.  Modelling capillary filling dynamics using lattice Boltzmann simulations , 2009, 0911.0459.

[22]  Haibo Huang,et al.  Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  A. Wagner,et al.  Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Baochang Shi,et al.  Multi-relaxation-time lattice Boltzmann model for incompressible flow , 2006 .

[25]  Sauro Succi,et al.  Lattice Boltzmann simulations of capillary filling: Finite vapour density effects , 2008, 0801.4223.

[26]  G. Doolen,et al.  Discrete Boltzmann equation model for nonideal gases , 1998 .