A fictitious domain approach for the Stokes problem based on the extended finite element method
暂无分享,去创建一个
Alexei Lozinski | S'ebastien Court | Sébastien Court | Michel Fourni'e | A. Lozinski | Michel Fourni'e
[1] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[2] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[3] Peter Hansbo,et al. A hierarchical NXFEM for fictitious domain simulations , 2011 .
[4] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[5] Wolfgang A. Wall,et al. An XFEM‐based embedding mesh technique for incompressible viscous flows , 2011 .
[6] Bertrand Maury. Numerical Analysis of a Finite Element/Volume Penalty Method , 2009, SIAM J. Numer. Anal..
[7] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[8] Michel Salaün,et al. High‐order extended finite element method for cracked domains , 2005 .
[9] G. Golub,et al. Structured inverse eigenvalue problems , 2002, Acta Numerica.
[10] H. Meijer,et al. An extended finite element method for the simulation of particulate viscoelastic flows , 2010 .
[11] Gianluca Iaccarino,et al. IMMERSED BOUNDARY METHODS , 2005 .
[12] P. Hansbo,et al. Fictitious domain finite element methods using cut elements , 2012 .
[13] G. Legendre,et al. Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation , 2008 .
[14] André Massing,et al. A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..
[15] Isabelle Ramière,et al. Convergence analysis of the Q1‐finite element method for elliptic problems with non‐boundary‐fitted meshes , 2008 .
[16] D. Chopp,et al. Modelling crack growth by level sets , 2013 .
[17] T. Belytschko,et al. The extended/generalized finite element method: An overview of the method and its applications , 2010 .
[18] Jean-François Remacle,et al. Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .
[19] Patrick Hild,et al. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.
[20] Patrick Laborde,et al. Crack tip enrichment in the XFEM method using a cut-off function , 2008 .
[21] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[22] Marius Tucsnak,et al. Convergence of the Lagrange-Galerkin Method for the Equations Modelling the Motion of a Fluid-Rigid System , 2005, SIAM J. Numer. Anal..
[23] Ted Belytschko,et al. Modelling crack growth by level sets in the extended finite element method , 2001 .
[24] Jaroslav Haslinger,et al. A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..
[25] W. Wall,et al. An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .
[26] T. Belytschko,et al. MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .
[27] Anders Klarbring,et al. Fictitious domain/mixed finite element approach for a class of optimal shape design problems , 1995 .
[28] Ted Belytschko,et al. An extended finite element method with higher-order elements for curved cracks , 2003 .
[29] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[30] Marius Tucsnak,et al. An Initial and Boundary Value Problem Modeling of Fish-like Swimming , 2008 .
[31] Ted Belytschko,et al. The extended finite element method for rigid particles in Stokes flow , 2001 .
[32] M. Gunzburger,et al. Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses , 1992 .
[33] Juhani Pitkäranta,et al. Local stability conditions for the Babuška method of Lagrange multipliers , 1980 .
[34] R. Glowinski,et al. Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .
[35] Nicolas Moës,et al. A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .
[36] Nicolas Moës,et al. Imposing Dirichlet boundary conditions in the extended finite element method , 2006 .
[37] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[38] C. Peskin. The immersed boundary method , 2002, Acta Numerica.
[39] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[40] A. Quarteroni. Numerical Models for Differential Problems , 2009 .
[41] T. Belytschko,et al. Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .
[42] P. Angot,et al. A Fictitious domain approach with spread interface for elliptic problems with general boundary conditions , 2007 .
[43] G. Hou,et al. Numerical Methods for Fluid-Structure Interaction — A Review , 2012 .
[44] Helio J. C. Barbosa,et al. Boundary Lagrange multipliers in finite element methods: Error analysis in natural norms , 1992 .
[45] Loredana Smaranda,et al. Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time , 2009 .
[46] Erik Burman,et al. Stabilized finite element methods for the generalized Oseen problem , 2007 .
[47] T. Belytschko,et al. Extended finite element method for three-dimensional crack modelling , 2000 .
[48] Helio J. C. Barbosa,et al. The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .
[49] Patrick Laborde,et al. Crack tip enrichment in the XFEM using a cutoff function , 2008 .
[50] R. Glowinski,et al. A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .