Serial fusion of random subspace ensemble for subcellular phenotype images classification

Subcellular localisation is a key functional characteristic of proteins. In this paper, we apply Haralick texture analysis and Curvelet Transform for feature description and propose a cascade Random Subspace (RS) ensemble with rejection options for subcellular phenotype classification. Serial fusions of RS classifier ensembles much improve classification reliability. The rejection option is implemented by relating the consensus degree from majority voting to a confidence measure and abstaining to classify ambiguous samples if the consensus degree is lower than a threshold. Using the public 2D HeLa cell images, classification accuracy 93% is obtained with rejection rate 2.7% from the proposed system.

[1]  Fabio Roli,et al.  Reject option with multiple thresholds , 2000, Pattern Recognit..

[2]  Blaise Hanczar,et al.  Classification with reject option in gene expression data , 2008, Bioinform..

[3]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[4]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[5]  Nicholas A. Hamilton,et al.  Fast automated cell phenotype image classification , 2007, BMC Bioinformatics.

[6]  Petros Koumoutsakos,et al.  Edge detection in microscopy images using curvelets , 2009, BMC Bioinformatics.

[7]  J. Kittler,et al.  Multistage pattern recognition with reject option , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[8]  Loris Nanni,et al.  Fusion of systems for automated cell phenotype image classification , 2010, Expert Syst. Appl..

[9]  David A Clausi An analysis of co-occurrence texture statistics as a function of grey level quantization , 2002 .

[10]  Hanchuan Peng,et al.  Bioimage informatics: a new area of engineering biology , 2008, Bioinform..

[11]  Kai Huang,et al.  Boosting accuracy of automated classification of fluorescence microscope images for location proteomics , 2004, BMC Bioinformatics.

[12]  M V Boland,et al.  Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. , 1998, Cytometry.

[13]  Leen-Kiat Soh,et al.  Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[15]  Carol S. Lim,et al.  Controlling Protein Compartmentalization to Overcome Disease , 2006, Pharmaceutical Research.

[16]  David L. Donoho,et al.  Digital curvelet transform: strategy, implementation, and experiments , 2000, SPIE Defense + Commercial Sensing.

[17]  Robert F Murphy,et al.  Objective Evaluation of Differences in Protein Subcellular Distribution , 2002, Traffic.

[18]  Lior Shamir,et al.  IICBU 2008: a proposed benchmark suite for biological image analysis , 2008, Medical & Biological Engineering & Computing.

[19]  Bailing Zhang,et al.  Classification of Subcellular Phenotype Images by Decision Templates for Classifier Ensemble , 2010 .

[20]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[21]  David L. Donoho,et al.  Curvelets, multiresolution representation, and scaling laws , 2000, SPIE Optics + Photonics.

[22]  Ching Y. Suen,et al.  Application of majority voting to pattern recognition: an analysis of its behavior and performance , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[23]  R. Murphy,et al.  A framework for the automated analysis of subcellular patterns in human protein atlas images. , 2008, Journal of proteome research.

[24]  Robert F. Murphy,et al.  A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells , 2001, Bioinform..

[25]  Ching Y. Suen,et al.  A novel cascade ensemble classifier system with a high recognition performance on handwritten digits , 2007, Pattern Recognit..

[26]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[28]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[29]  Lior Shamir,et al.  Source Code for Biology and Medicine Open Access Wndchrm – an Open Source Utility for Biological Image Analysis , 2022 .

[30]  Robert P. W. Duin,et al.  Growing a multi-class classifier with a reject option , 2008, Pattern Recognit. Lett..

[31]  Jelena Kovacevic,et al.  A multiresolution approach to automated classification of protein subcellular location images , 2007, BMC Bioinformatics.

[32]  Fabio Roli,et al.  Analysis of error-reject trade-off in linearly combined multiple classifiers , 2004, Pattern Recognit..

[33]  Juan José Rodríguez Diez,et al.  Random Subspace Ensembles for fMRI Classification , 2010, IEEE Transactions on Medical Imaging.

[34]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[35]  Alessandro Sperduti,et al.  Theoretical and Experimental Analysis of a Two-Stage System for Classification , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  C. K. Chow,et al.  On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.