A CLOUD TOPSIS MODEL FOR GREEN SUPPLIER SELECTION
暂无分享,去创建一个
Due to stringent governmental regulations and increasing consciousness of the customers, the present day manufacturing organizations are continuously striving to engage green suppliers in their supply chain management systems. Selection of the most efficient green supplier is now not only dependant on the conventional evaluation criteria but it also includes various other sustainable parameters. This selection process has already been identified as a typical multi-criteria group decision-making task involving subjective judgments of different participating experts. In this paper, a green supplier selection problem for an automobile industry is solved while integrating the Cloud model with the technique for order of preference by similarity to an ideal solution (TOPSIS). The adopted method is capable of dealing with both fuzziness and randomness present in the human cognition process while appraising performance of the alternative green suppliers with respect to various evaluation criteria. This model identifies green supplier S 4 as the best choice. The derived ranking results using the adopted model closely match with those obtained from other variants of the TOPSIS method. The Cloud model can efficiently take into account both fuzziness and randomness in a qualitative attribute, and effectively reconstruct the qualitative attribute into the corresponding quantitative score for effective evaluation and appraisal of the considered green suppliers. Comparison of the derived ranking results with other MCDM techniques proves applicability, potentiality and solution accuracy of the Cloud TOPSIS model for the green supplier selection.