Proton-conductive metal-organic frameworks

Proton-conductive electrolytes are key materials in fuel cells. We introduced acidic functional groups into a porous coordination polymer (PCP), or metal–organic framework (MOF), and constructed pr...

[1]  O. Fabelo,et al.  High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework. , 2011, Journal of the American Chemical Society.

[2]  H. Kitagawa,et al.  Proton conductivity of biopolymer–platinum nanoparticle composite under high humidity , 2008 .

[3]  H. Kitagawa,et al.  Synthesis of a novel isoreticular metal–organic framework by protection and complexation of 2,5-dihydroxyterephthalic acid , 2011 .

[4]  S. Shinkai,et al.  "Clickable" metal-organic framework. , 2008, Journal of the American Chemical Society.

[5]  S. Kitagawa,et al.  Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). , 2012, Dalton transactions.

[6]  H. Kitagawa,et al.  Highly proton-conductive copper coordination polymer, H2dtoaCu (H2dtoa=dithiooxamide anion) , 2003 .

[7]  M. Zaworotko,et al.  POROUS SOLIDS BY DESIGN : ZN(4,4'-BPY)2(SIF6)N.XDMF, A SINGLE FRAMEWORK OCTAHEDRAL COORDINATION POLYMER WITH LARGE SQUARE CHANNELS , 1995 .

[8]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[9]  Takayoshi Ishimoto,et al.  A key mechanism of ethanol electrooxidation reaction in a noble-metal-free metal-organic framework , 2013 .

[10]  Teppei Yamada,et al.  Porous Interpenetrating Metal−Organic Frameworks with Hierarchical Nodes , 2011 .

[11]  S. Kanda,et al.  Magnetic and electrical properties of coordination polymers formed with copper and rubeanic acid , 2007 .

[12]  Teppei Yamada,et al.  Promotion of low-humidity proton conduction by controlling hydrophilicity in layered metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[13]  Teppei Yamada,et al.  High proton conductivity of one-dimensional ferrous oxalate dihydrate. , 2009, Journal of the American Chemical Society.

[14]  Freek Kapteijn,et al.  Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity , 2011 .

[15]  K. Kreuer Proton Conductivity: Materials and Applications , 1996 .

[16]  Seth M Cohen,et al.  Isoreticular synthesis and modification of frameworks with the UiO-66 topology. , 2010, Chemical communications.

[17]  G. Shimizu,et al.  Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework. , 2010, Journal of the American Chemical Society.

[18]  S. Iijima,et al.  Metal-Complex Ferrimagnets with the Formula {NBu4[M(II)Fe(III)(ox)3]}3∞ (NBu4+ = Tetra(n-butyl)ammonium Ion, ox2− = Oxalate Ion, M = Fe2+, Ni2+) , 1992 .

[19]  Teppei Yamada,et al.  Crystal Structure and Proton Conductivity of a One-dimensional Coordination Polymer, {Mn(DHBQ)(H2O)2} , 2009 .

[20]  H. Kitagawa,et al.  Defect Control To Enhance Proton Conductivity in a Metal–Organic Framework , 2015 .

[21]  H. Kageyama,et al.  Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity , 2014 .

[22]  V. Thangadurai,et al.  Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework. , 2009, Nature chemistry.

[23]  Teppei Yamada,et al.  Structures and Proton Conductivity of One-Dimensional M(dhbq)·nH2O (M = Mg, Mn, Co, Ni, and Zn, H2(dhbq) = 2,5-Dihydroxy-1,4-benzoquinone) Promoted by Connected Hydrogen-Bond Networks with Absorbed Water , 2010 .

[24]  C. Serre,et al.  Functionalization in flexible porous solids: effects on the pore opening and the host-guest interactions. , 2010, Journal of the American Chemical Society.

[25]  S. Kanda,et al.  A Proton Conductive Coordination Polymer. I. [N,N′-Bis(2-hydroxyethyl)dithiooxamido]copper(II) , 1979 .

[26]  S. Kitagawa,et al.  Integration of intrinsic proton conduction and guest-accessible nanospace into a coordination polymer. , 2013, Journal of the American Chemical Society.

[27]  S. Kitagawa,et al.  Template-directed proton conduction pathways in a coordination framework , 2014 .

[28]  S. Kitagawa,et al.  Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. , 2010, Nature materials.

[29]  C. Serre,et al.  Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH).(O2C-C6H4-CO2).(HO2C-C6H4-CO2H)x. , 2002, Chemical communications.

[30]  S. Kitagawa,et al.  Inherent proton conduction in a 2D coordination framework. , 2012, Journal of the American Chemical Society.

[31]  C. Mathonière,et al.  Ferrimagnetic Mixed-Valency and Mixed-Metal Tris(oxalato)iron(III) Compounds: Synthesis, Structure, and Magnetism. , 1996, Inorganic chemistry.

[32]  M. Tyagi,et al.  Proton dynamics of two-dimensional oxalate-bridged coordination polymers. , 2014, Physical chemistry chemical physics : PCCP.

[33]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[34]  Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds , 1998 .

[35]  D. Farrusseng,et al.  Protection–deprotection Methods Applied to Metal–Organic Frameworks for the Design of Original Single‐Site Catalysts , 2011 .

[36]  Teppei Yamada,et al.  Rational designs for highly proton-conductive metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[37]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[38]  Seth M. Cohen,et al.  Tandem modification of metal-organic frameworks by a postsynthetic approach. , 2008, Angewandte Chemie.

[39]  H. Kitagawa,et al.  Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M = Mn(II), Fe(II), Co(II); NH(prol)3(+) = tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. , 2009, Journal of the American Chemical Society.

[40]  H. O̅kawa,et al.  Ferromagnetic Hetero–Metal Assemblies, {NBu4[CuCr(ox)3]}x and {[{Cu(bpy)}2Cr(ox)3]NO3}x , 1990 .

[41]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[42]  Linhua Xie,et al.  Organic ammonium ion-occluded flexible coordination polymers: Thermal activation, structure transformation and proton transfer , 2010 .

[43]  Stephen Mann,et al.  Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization , 1999, Nature.

[44]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[45]  Teppei Yamada,et al.  Hydroxyl group recognition by hydrogen-bonding donor and acceptor sites embedded in a layered metal-organic framework. , 2011, Journal of the American Chemical Society.

[46]  M. Burghammer,et al.  Synthesis and structural characterization of metal–organic frameworks with the mellitate linker M2(OH)2[C12O12H2]·2H2O (M = Al, Ga, In) MIL-116 , 2013 .

[47]  Takayoshi Ishimoto,et al.  A metal-organic framework as an electrocatalyst for ethanol oxidation. , 2010, Angewandte Chemie.

[48]  S. Ohkoshi,et al.  High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering. , 2010, Journal of the American Chemical Society.

[49]  Allan J. Jacobson,et al.  Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions , 2005 .

[50]  Teppei Yamada,et al.  Wide control of proton conductivity in porous coordination polymers. , 2011, Journal of the American Chemical Society.

[51]  H. Fjellvåg,et al.  An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. , 2005, Angewandte Chemie.

[52]  F. Paesani Molecular Mechanisms of Water-Mediated Proton Transport in MIL-53 Metal–Organic Frameworks , 2013 .

[53]  Sossina M. Haile,et al.  Solid acids as fuel cell electrolytes , 2001, Nature.

[54]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[55]  C. Serre,et al.  Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. , 2011, Chemical communications.

[56]  Li-Min Wang,et al.  Synthesis and structural characterization of {[Fe(OH)(H2bta)](H2O)}n (3-D) (H4bta = benzenetetracarboxylic acid) , 2002 .

[57]  Hiroyuki Asakura,et al.  Order-to-disorder structural transformation of a coordination polymer and its influence on proton conduction. , 2014, Chemical communications.

[58]  T. Nagao,et al.  Insulator-to-Proton-Conductor Transition in a Dense Metal-Organic Framework. , 2015, Journal of the American Chemical Society.

[59]  K. Lillerud,et al.  Post-synthetic modification of the metal–organic framework compound UiO-66 , 2010 .

[60]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[61]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[62]  M. Kimata,et al.  Single-crystal X-ray diffraction and spectroscopic studies on humboldtine and lindbergite: weak Jahn–Teller effect of Fe2+ ion , 2008 .

[63]  F. Paesani,et al.  A refined MS-EVB model for proton transport in aqueous environments. , 2012, The journal of physical chemistry. B.

[64]  J. Greneche,et al.  The first ferric carboxylate with a three-dimensional hydrid open-framework (MIL-82): its synthesis, structure, magnetic behavior and study of its dehydration by Mössbauer spectroscopy , 2004 .

[65]  S. Kitagawa,et al.  Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. , 2013, Accounts of chemical research.

[66]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[67]  M. Zaworotko,et al.  Crystal engineering of a nanoscale Kagomé lattice. , 2002, Angewandte Chemie.

[68]  Tatsuo C. Kobayashi,et al.  Formation of a One-Dimensional Array of Oxygen in a Microporous Metal-Organic Solid , 2002, Science.

[69]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[70]  Kimoon Kim,et al.  Proton conduction in metal-organic frameworks and related modularly built porous solids. , 2013, Angewandte Chemie.

[71]  C. Serre,et al.  High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. , 2008, Inorganic chemistry.

[72]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[73]  H. Kitagawa,et al.  Complex-Plane Impedance Study on a Hydrogen-Doped Copper Coordination Polymer: N,N ′-bis-(2-hydroxyethyl)dithiooxamidato-copper(II) , 2002 .

[74]  Teppei Yamada,et al.  Design and Characterization of a Polarized Coordination Polymer of a Zinc(II) Biphenyldicarboxylate Bearing a Sulfone Group , 2010 .

[75]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[76]  Susumu Kitagawa,et al.  Coordination-network-based ionic plastic crystal for anhydrous proton conductivity. , 2012, Journal of the American Chemical Society.

[77]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.