The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells

Abstract In recent years, all the operating principles of intermediate band behaviour have been demonstrated in InAs/GaAs quantum dot (QD) solar cells. Having passed this hurdle, a new stage of research is underway, whose goal is to deliver QD solar cells with efficiencies above those of state-of-the-art single-gap devices. In this work, we demonstrate that this is possible, using the present InAs/GaAs QD system, if the QDs are made to be radiatively dominated, and if absorption enhancements are achieved by a combination of increasing the number of QDs and light trapping. A quantitative prediction is also made of the absorption enhancements required, suggesting that a 30 fold increase in the number of QDs and a light trapping enhancement of 10 are sufficient. Finally, insight is given into the relative merits of absorption enhancement via increasing QD numbers and via light trapping.

[1]  B. Marsen,et al.  Investigation of the Sub‐Bandgap Photoresponse in CuGaS2 : Fe for Intermediate Band Solar Cells , 2012 .

[2]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[3]  Tetsuya Kawanishi,et al.  Fabrication of ultra‐high‐density InAs quantum dots using the strain‐compensation technique , 2011 .

[4]  A. Luque,et al.  Upper limits to absorption enhancement in thick solar cells using diffraction gratings , 2011 .

[5]  A. Luque,et al.  Quantum dot intermediate band solar cell , 2000 .

[6]  C. Stanley,et al.  Extreme voltage recovery in GaAs:Ti intermediate band solar cells , 2013 .

[7]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[8]  Christopher G. Bailey,et al.  Open-Circuit Voltage Improvement of InAs/GaAs Quantum-Dot Solar Cells Using Reduced InAs Coverage , 2011, IEEE Journal of Photovoltaics.

[9]  Y. Okada,et al.  Fabrication of 100 layer-stacked InAs/GaNAs strain-compensated quantum dots on GaAs (001) for application to intermediate band solar cell , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[10]  A. Luque,et al.  Review of Experimental Results Related to the Operation of Intermediate Band Solar Cells , 2014, IEEE Journal of Photovoltaics.

[11]  Katsuhiko Saito,et al.  Photogenerated Current By Two-Step Photon Excitation in ZnTeO Intermediate Band Solar Cells with n-ZnO Window Layer , 2014, IEEE Journal of Photovoltaics.

[12]  A. Luque,et al.  Radiative thermal escape in intermediate band solar cells , 2011 .

[13]  A. Luque,et al.  New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells , 2011 .

[14]  A. Luque,et al.  Intraband absorption for normal illumination in quantum dot intermediate band solar cells , 2010 .

[15]  S. Varlamov,et al.  Lambertian matched absorption enhancement in PECVD poly‐Si thin film on aluminum induced textured glass superstrates for solar cell applications , 2010 .

[16]  Antonio Luque,et al.  Absorption coefficient for the intraband transitions in quantum dot materials , 2012 .

[17]  C. Cañizo,et al.  Crystalline Silicon Solar Cells and Modules , 2011 .

[18]  C. Stanley,et al.  General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence , 2004 .

[19]  C. D. Farmer,et al.  Advances in quantum dot intermediate band solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[20]  Antonio Luque,et al.  Intermediate bands versus levels in non-radiative recombination , 2006 .

[21]  A. Luque,et al.  Interband optical absorption in quantum well solarcells , 2013 .

[22]  Stanko Tomić,et al.  Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design , 2008 .

[23]  B. Marsen,et al.  Investigation of the Sub‐Bandgap Photoresponse in CuGaS2 : Fe for Intermediate Band Solar Cells , 2011 .

[24]  C. D. Farmer,et al.  Voltage recovery in intermediate band solar cells , 2012 .

[25]  Yoshitaka Okada,et al.  Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells , 2008 .

[26]  Martin A. Green Two new efficient crystalline silicon light‐trapping textures , 1999 .

[27]  A. Luque,et al.  Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell , 2004, IEEE Transactions on Electron Devices.

[28]  Yoshitaka Okada,et al.  Two-photon excitation in an intermediate band solar cell structure , 2012 .

[29]  Dayong Zhou,et al.  Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy , 2010 .

[30]  J. Nelson The physics of solar cells , 2003 .

[31]  Wladek Walukiewicz,et al.  Band Anticrossing in GaInNAs Alloys , 1999 .

[32]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[33]  K. Yamaguchi,et al.  In-plane quantum-dot superlattices of InAs on GaAsSb/GaAs(001) for intermediate band solar-cells , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[34]  B. Sopori Thin‐Film Silicon Solar Cells , 2005 .

[35]  Thomas Kirchartz,et al.  Directional selectivity and ultra‐light‐trapping in solar cells , 2008 .

[36]  A. Luque,et al.  Realistic Detailed Balance Study of the Quantum Efficiency of Quantum Dot Solar Cells , 2014 .

[37]  A. Luque,et al.  Thermodynamic consistency of sub-bandgap absorbing solar cell proposals , 2001 .

[38]  Nikolai N. Ledentsov,et al.  AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs , 2009 .

[39]  A. Zunger,et al.  Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells , 2008 .

[40]  Antonio Luque,et al.  Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell , 2010 .

[41]  Peter Bermel,et al.  Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector , 2008 .

[42]  R. Morf,et al.  Submicrometer gratings for solar energy applications. , 1995, Applied optics.

[43]  Martin A. Green,et al.  Silicon solar cells: evolution, high-efficiency design and efficiency enhancements , 1993 .

[44]  A. Luque,et al.  On the Partial Filling of the Intermediate Band in IB Solar Cells , 2010, IEEE Transactions on Electron Devices.

[45]  C. D. Farmer,et al.  Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. , 2006, Physical review letters.

[46]  Christopher G. Bailey,et al.  Effect of strain compensation on quantum dot enhanced GaAs solar cells , 2008 .

[47]  A. Luque,et al.  Symmetry considerations in the empirical k.p Hamiltonian for the study of intermediate band solar cells , 2012 .

[48]  A. Luque,et al.  Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels , 1997 .

[49]  A. Aberle,et al.  Commercial white paint as back surface reflector for thin-film solar cells , 2007 .

[50]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[51]  Antonio Luque,et al.  Interband absorption of photons by extended states in intermediate band solar cells , 2013 .

[52]  A. Sánchez,et al.  Carrier recombination effects in strain compensated quantum dot stacks embedded in solar cells , 2008 .