Double Residuated Lattices and Their Applications

In this paper we introduce a new class of double residuated lattices. Basic properties of these algebras are given. Taking double residuated lattices as a basis, we propose a fuzzy generalisation of information relations. We also define several fuzzy information operators and show that some classes of information relations can be characterised by means of these operators.

[1]  Stéphane Demri,et al.  Incomplete Information: Structure, Inference, Complexity , 2002, Monographs in Theoretical Computer Science An EATCS Series.

[2]  Gerard Allwein,et al.  Kripke models for linear logic , 1993, Journal of Symbolic Logic.

[3]  Lluis Godo,et al.  On complete residuated many-valued logics with t-norm conjunction , 2001, Proceedings 31st IEEE International Symposium on Multiple-Valued Logic.

[4]  Ewa Orlowska,et al.  Kripke models with relative accessibility and their applications to inferences from incomplete information , 1988 .

[5]  Stéphane Demri,et al.  Structures of Information , 2002 .

[6]  Anna Maria Radzikowska,et al.  Towards studying of fuzzy information relations , 2001, EUSFLAT Conf..

[7]  E. Turunen Mathematics Behind Fuzzy Logic , 1999 .

[8]  Ivo Düntsch,et al.  Beyond modalities: sufficiency and mixed algebras , 2001 .

[9]  Ivo Düntsch,et al.  Logics of Complementarity in Information Systems , 2000, Math. Log. Q..

[10]  Tony Hoare,et al.  The Weakest Prespecification II , 1986 .

[11]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[12]  Philippe Balbiani,et al.  A hierarchy of modal logics with relative accessibility relations , 1999, J. Appl. Non Class. Logics.

[13]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[14]  J. Kacprzyk,et al.  Incomplete Information: Rough Set Analysis , 1997 .

[15]  J. Goguen L-fuzzy sets , 1967 .

[16]  George Georgescu,et al.  Pseudo-t-norms and pseudo-BL algebras , 2001, Soft Comput..

[17]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. Meyer,et al.  Algebraic analysis of entailment I , 1972 .

[19]  Beata Konikowska,et al.  A Logic for Reasoning about Relative Similarity , 1997, Stud Logica.

[20]  Ewa Orlowska,et al.  Many-valuedness and uncertainty , 1997, Proceedings 1997 27th International Symposium on Multiple- Valued Logic.

[21]  Ulrich Höhle,et al.  Non-classical logics and their applications to fuzzy subsets : a handbook of the mathematical foundations of fuzzy set theory , 1995 .

[22]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[23]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[24]  James B. Hart,et al.  The Structure of Commutative Residuated Lattices , 2002, Int. J. Algebra Comput..

[25]  Dimiter Vakarelov,et al.  Information Systems, Similarity Relations and Modal Logics , 1998 .

[26]  C. Rauszer Semi-Boolean algebras and their applications to intuitionistic logic with dual operations , 1974 .

[27]  Anna Maria Radzikowska,et al.  A comparative study of fuzzy rough sets , 2002, Fuzzy Sets Syst..

[28]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[29]  Anna Maria Radzikowska,et al.  On some classes of fuzzy information relations , 2001, Proceedings 31st IEEE International Symposium on Multiple-Valued Logic.