Force tuning through regulation of clathrin-dependent integrin endocytosis

ICAP-1 controls integrin endocytosis through interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an integrin inhibitor is an unprecedented mechanism to finely tune physical forces at focal adhesions.

[1]  M. Humphries,et al.  Clathrin-containing adhesion complexes , 2019, The Journal of cell biology.

[2]  Pere Roca-Cusachs,et al.  Integrin Binding Dynamics Modulate Ligand-Specific Mechanosensing in Mammary Gland Fibroblasts , 2019, bioRxiv.

[3]  O. Destaing,et al.  Cellular tension encodes local Src-dependent differential β1 and β3 integrin mobility , 2019, Molecular biology of the cell.

[4]  Hellyeh Hamidi,et al.  Integrin trafficking in cells and tissues , 2019, Nature Cell Biology.

[5]  T. Betz,et al.  Frustrated endocytosis controls contractility-independent mechanotransduction at clathrin-coated structures , 2018, Nature Communications.

[6]  O. Destaing,et al.  The CCM1–CCM2 complex controls complementary functions of ROCK1 and ROCK2 that are required for endothelial integrity , 2018, Journal of Cell Science.

[7]  Guillaume Jacquemet,et al.  Filopodome Mapping Identifies p130Cas as a Mechanosensitive Regulator of Filopodia Stability , 2018, Current Biology.

[8]  U. Schlattner,et al.  The NDPK/NME superfamily: state of the art , 2018, Laboratory Investigation.

[9]  S. Richon,et al.  Cancer-associated fibroblasts lead tumor invasion through integrin-β3–dependent fibronectin assembly , 2017, The Journal of cell biology.

[10]  C. Kural,et al.  Mechanoregulation of clathrin-mediated endocytosis , 2017, Journal of Cell Science.

[11]  Benjamin Klapholz,et al.  Talin – the master of integrin adhesions , 2017, Journal of Cell Science.

[12]  O. Destaing,et al.  αvβ3 integrins negatively regulate cellular forces by phosphorylation of its distal NPXY site , 2017, Biology of the cell.

[13]  C. Albigès-Rizo,et al.  ICAP-1 monoubiquitylation coordinates matrix density and rigidity sensing for cell migration through ROCK2–MRCKα balance , 2017, Journal of Cell Science.

[14]  J. Lakins,et al.  Monitoring developmental force distributions in reconstituted embryonic epithelia. , 2016, Methods.

[15]  D. Owen,et al.  Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2 , 2016, Nature Structural &Molecular Biology.

[16]  M. Sheetz,et al.  Integrin-beta3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force , 2015, Nature Communications.

[17]  Margaret L. Gardel,et al.  Forcing cells into shape: the mechanics of actomyosin contractility , 2015, Nature Reviews Molecular Cell Biology.

[18]  C. Yap,et al.  Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development , 2015, Front. Cell. Neurosci..

[19]  A. Benz,et al.  Regulation of β1 integrin-Klf2-mediated angiogenesis by CCM proteins. , 2015, Developmental cell.

[20]  T. Lagache,et al.  Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling , 2014, Science.

[21]  Raphael Ruppert,et al.  The Mechanism of Kindlin-Mediated Activation of Integrin αIIbβ3 , 2013, Current Biology.

[22]  T. Veenstra,et al.  Nm23-h1 binds to gelsolin and inactivates its actin-severing capacity to promote tumor cell motility and metastasis. , 2013, Cancer research.

[23]  J. Olivo-Marin,et al.  αTAT1 catalyses microtubule acetylation at clathrin-coated pits , 2013, Nature.

[24]  M. Malbouyres,et al.  CCM1–ICAP-1 complex controls β1 integrin–dependent endothelial contractility and fibronectin remodeling , 2013, The Journal of cell biology.

[25]  D. Bouvard,et al.  Calcium and Calmodulin-dependent Serine/Threonine Protein Kinase Type II (CaMKII)-mediated Intramolecular Opening of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP-1α) Negatively Regulates β1 Integrins* , 2013, The Journal of Biological Chemistry.

[26]  M. Mann,et al.  β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments , 2013, Nature Cell Biology.

[27]  Matthew E. Berginski,et al.  The Focal Adhesion Analysis Server: a web tool for analyzing focal adhesion dynamics , 2013, F1000Research.

[28]  R. Tampé,et al.  The data deluge , 2012, Nature Cell Biology.

[29]  B. Wehrle-Haller Assembly and disassembly of cell matrix adhesions. , 2012, Current opinion in cell biology.

[30]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[31]  J. Ivaska,et al.  Distinct Recycling of Active and Inactive β1 Integrins , 2012, Traffic.

[32]  D. Bouvard,et al.  Osteoblast mineralization requires β1 integrin/ICAP-1–dependent fibronectin deposition , 2011, The Journal of Cell Biology.

[33]  Manuel Théry,et al.  A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. , 2011, Lab on a chip.

[34]  J. Yates,et al.  Analysis of the myosinII-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation , 2011, Nature Cell Biology.

[35]  H. Schiller,et al.  Quantitative proteomics of the integrin adhesome show a myosin II‐dependent recruitment of LIM domain proteins , 2011, EMBO reports.

[36]  Chungho Kim,et al.  The final steps of integrin activation: the end game , 2010, Nature Reviews Molecular Cell Biology.

[37]  Pier Paolo Di Fiore,et al.  The endocytic matrix , 2010, Nature.

[38]  J. Norman,et al.  Integrins: masters and slaves of endocytic transport , 2009, Nature Reviews Molecular Cell Biology.

[39]  G. Gundersen,et al.  Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells , 2009, The Journal of cell biology.

[40]  Pere Roca-Cusachs,et al.  Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction , 2009, Proceedings of the National Academy of Sciences.

[41]  O. Destaing,et al.  Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions , 2009, Journal of Cell Science.

[42]  Jonathan A. Cooper,et al.  Quantitative proteomics identifies a Dab2/integrin module regulating cell migration , 2009, The Journal of cell biology.

[43]  J. Kunz,et al.  Focal adhesion disassembly requires clathrin‐dependent endocytosis of integrins , 2009, FEBS letters.

[44]  Yongxiang Gao,et al.  Accurate detection and complete tracking of large populations of features in three dimensions. , 2009, Optics express.

[45]  R. Fässler,et al.  Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails , 2009, Journal of Cell Science.

[46]  R. Fässler,et al.  The role of integrin binding sites in fibronectin matrix assembly in vivo. , 2008, Current opinion in cell biology.

[47]  A. Grichine,et al.  Cell adaptive response to extracellular matrix density is controlled by ICAP-1–dependent β1-integrin affinity , 2008, The Journal of cell biology.

[48]  V. Dammai,et al.  awd, the Homolog of Metastasis Suppressor Gene Nm23, Regulates Drosophila Epithelial Cell Invasion , 2008, Molecular and Cellular Biology.

[49]  A. Aszódi,et al.  Defective osteoblast function in ICAP-1-deficient mice , 2007, Development.

[50]  K. Kaibuchi,et al.  Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. , 2007, Developmental cell.

[51]  U. Landegren,et al.  Direct observation of individual endogenous protein complexes in situ by proximity ligation , 2006, Nature Methods.

[52]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[53]  A. Griffin,et al.  A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating , 2006, Proceedings of the National Academy of Sciences.

[54]  D. Bouvard,et al.  Nuclear translocation of integrin cytoplasmic domain-associated protein 1 stimulates cellular proliferation. , 2005, Molecular biology of the cell.

[55]  B. Adryan,et al.  Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development. , 2003, Genes & development.

[56]  R. Fässler,et al.  Disruption of Focal Adhesions by Integrin Cytoplasmic Domain-associated Protein-1α* , 2003, The Journal of Biological Chemistry.

[57]  Arnoud Sonnenberg,et al.  The fibronectin-binding integrins α5β1 and αvβ3 differentially modulate RhoA–GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis , 2002, The Journal of cell biology.

[58]  D. Bouvard,et al.  Integrin Cytoplasmic Domain-associated Protein 1α (ICAP-1α) Interacts Directly with the Metastasis Suppressor nm23-H2, and Both Proteins Are Targeted to Newly Formed Cell Adhesion Sites upon Integrin Engagement* , 2002, The Journal of Biological Chemistry.

[59]  Ben Fabry,et al.  Traction fields, moments, and strain energy that cells exert on their surroundings. , 2002, American journal of physiology. Cell physiology.

[60]  L. Silengo,et al.  The integrin cytoplasmic domain-associated protein ICAP-1 binds and regulates Rho family GTPases during cell spreading , 2002, The Journal of cell biology.

[61]  Christoph Ballestrem,et al.  Marching at the front and dragging behind , 2001, The Journal of cell biology.

[62]  P. Etter,et al.  Nucleoside Diphosphate Kinase, a Source of GTP, Is Required for Dynamin-Dependent Synaptic Vesicle Recycling , 2001, Neuron.

[63]  Benjamin Geiger,et al.  Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts , 2000, Nature Cell Biology.

[64]  S. Schmid,et al.  Regulation of signal transduction by endocytosis. , 2000, Current opinion in cell biology.

[65]  M. Hemler,et al.  Interaction of the Integrin β1 Cytoplasmic Domain with ICAP-1 Protein* , 1999, The Journal of Biological Chemistry.

[66]  M. Ginsberg,et al.  Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix , 1995, Cell.

[67]  A. Sonnenberg,et al.  Regulation of integrin function and trafficking , 2013 .

[68]  Clare M Waterman,et al.  High resolution traction force microscopy based on experimental and computational advances. , 2008, Biophysical journal.