DeMAAE: deep multiplicative attention-based autoencoder for identification of peculiarities in video sequences
暂无分享,去创建一个
[1] M. Kolekar,et al. Unsupervised anomalous event detection in videos using spatio-temporal inter-fused autoencoder , 2022, Multimedia Tools and Applications.
[2] M. Kolekar,et al. A3N: Attention-based adversarial autoencoder network for detecting anomalies in video sequence , 2022, J. Vis. Commun. Image Represent..
[3] João Manuel R S Tavares,et al. Weakly Supervised Video Anomaly Detection Based on 3D Convolution and LSTM , 2021, Sensors.
[4] Rafik Goubran,et al. An integrated approach for medical abnormality detection using deep patch convolutional neural networks , 2019, The Visual Computer.
[5] Yu Qiao,et al. AnoPCN: Video Anomaly Detection via Deep Predictive Coding Network , 2019, ACM Multimedia.
[6] Jian Li,et al. AddGraph: Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN , 2019, IJCAI.
[7] Abhijeet V. Nandedkar,et al. Crowd anomaly detection and localization using histogram of magnitude and momentum , 2019, The Visual Computer.
[8] Changhe Tu,et al. Classification of gait anomalies from kinect , 2018, The Visual Computer.
[9] Chen Shen,et al. Spatio-Temporal AutoEncoder for Video Anomaly Detection , 2017, ACM Multimedia.
[10] Marimuthu Palaniswami,et al. A visual-numeric approach to clustering and anomaly detection for trajectory data , 2017, The Visual Computer.
[11] Aggelos K. Katsaggelos,et al. Anomalous video event detection using spatiotemporal context , 2011 .