Optimization of catenary risers with hydrodynamic dampers

Abstract This study presents an optimization process on the design of an improved steel catenary riser configuration with hydrodynamic dampers that seek to minimize the effects caused by compression waves along the risers. The dimensions and positioning of these dampers are obtained using the Globalized Bounded Nelder–Mead optimization method (GBNM). This method requires no gradient and is proved to be capable of identifying the best feasible riser configurations according to a specific performance criteria. A case study addresses the operational viability of the catenary riser with hydrodynamic dampers (CRHD) in an effort to reduce its material cost and improve its structural behavior. A nonlinear dynamic finite element analysis is necessary to evaluate the mechanical behavior of each candidate configuration, which makes the optimization process computationally expensive. As such, we discuss ways of improving the overall efficiency of the method by reducing the number of analyzed configurations.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Ludimar Lima de Aguiar,et al.  Technical Feasibility Study of Steel Catenary Risers for Pre-Salt Field Developments , 2017 .

[3]  David G. Stork,et al.  Pattern Classification , 1973 .

[4]  P. Jean,et al.  Optimization of multiple edge barriers with genetic algorithms coupled with a Nelder–Mead local search , 2007 .

[5]  M. Picchi Scardaoni,et al.  Analytical and Finite Element Approach for the In-plane Study of Frames of Non-conventional Civil Aircraft , 2019, Aerotecnica Missili & Spazio.

[6]  Beatriz Souza Leite Pires de Lima,et al.  Tailoring the particle swarm optimization algorithm for the design of offshore oil production risers , 2011 .

[7]  Stephen Kemble,et al.  MIDACO on MINLP space applications , 2013 .

[8]  Beatriz S. L. P. de Lima,et al.  Optimization of Steel Catenary Risers for Offshore Oil Production Using Artificial Immune System , 2008, ICARIS.

[9]  Rafael Loureiro Tanaka,et al.  Parallel Dynamic Optimization of Steel Risers , 2011 .

[10]  H. R. Riggs,et al.  Efficient Static Analysis and Design of Flexible Risers , 1991 .

[11]  R. H. Lopez,et al.  Robust optimization of a flexible rotor-bearing system using the Campbell diagram , 2011 .

[12]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[13]  A Genetic Algorithm Approach to Steel Riser Optimization , 2006 .

[14]  H. Ghiasi,et al.  Constrained Globalized Nelder—Mead Method for Simultaneous Structural and Manufacturing Optimization of a Composite Bracket , 2008 .

[15]  Beatriz Souza Leite Pires de Lima,et al.  Studies on Meta-Modeling for Lazy-Wave Steel Catenary Risers , 2018 .

[16]  Qianjin Yue,et al.  Flexible Riser Configuration Design for Extremely Shallow Water With Surrogate-Model-Based Optimization , 2016 .

[17]  Breno Pinheiro Jacob,et al.  Alternative Configurations For Steel Catenary Risers For Turret-Moored FPSOs , 1999 .

[18]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[19]  Marco Antonio Luersen,et al.  Globalized Nelder-Mead method for engineering optimization , 2002 .

[20]  Alexandre G. Evsukoff,et al.  Application of Genetic Algorithms to the Synthesis of Riser Configurations , 2003 .

[21]  Shaahin Filizadeh,et al.  Globalized and bounded Nelder‐Mead algorithm with deterministic restarts for tuning controller parameters: Method and application , 2017 .

[22]  Hezhen Yang,et al.  Metamodel approach for reliability-based design optimization of a steel catenary riser , 2011 .

[23]  Timothy J McCarthy,et al.  Evolutionary Design of Marine Riser Systems , 2004 .