Self-consistent effective-one-body theory for spinning binaries based on post-Minkowskian approximation

[1]  Jiliang Jing,et al.  New self-consistent effective one-body theory for spinless binaries based on the post-Minkowskian approximation , 2022, Science China Physics, Mechanics & Astronomy.

[2]  Anzhong Wang,et al.  Gauge invariant perturbations of general spherically symmetric spacetimes , 2022, Science China Physics, Mechanics & Astronomy.

[3]  Jiliang Jing,et al.  Effect of noncircularity on the dynamic behaviors of particles in a disformal rotating black-hole spacetime , 2021, Science China Physics, Mechanics & Astronomy.

[4]  Jiliang Jing,et al.  Test of a model coupling of electromagnetic and gravitational fields by using high-frequency gravitational waves , 2021, Science China Physics, Mechanics & Astronomy.

[5]  C. Cheung,et al.  Tidal Effects in the Post-Minkowskian Expansion. , 2020, Physical review letters.

[6]  T. Damour,et al.  Scattering of tidally interacting bodies in post-Minkowskian gravity , 2020, Physical Review D.

[7]  T. Damour Classical and quantum scattering in post-Minkowskian gravity , 2019, 1912.02139.

[8]  Zhoujian Cao,et al.  Generalized gravitomagnetic field and gravitational waves , 2019, Science China Physics, Mechanics & Astronomy.

[9]  C. Cheung,et al.  Black hole binary dynamics from the double copy and effective theory , 2019, Journal of High Energy Physics.

[10]  J. Steinhoff,et al.  Breakdown of the classical double copy for the effective action of dilaton-gravity at NNLO , 2019, Physical Review D.

[11]  P. Vanhove,et al.  Post-Minkowskian Hamiltonians in general relativity , 2019, Physical Review D.

[12]  R. Russo,et al.  Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes , 2019, Physical Review D.

[13]  A. Buonanno,et al.  Energetics of two-body Hamiltonians in post-Minkowskian gravity , 2019, Physical Review D.

[14]  C. Cheung,et al.  Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order. , 2019, Physical review letters.

[15]  A. Buonanno,et al.  Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order , 2018, Physical Review D.

[16]  C. Cheung,et al.  From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion. , 2018, Physical review letters.

[17]  A. Fokas,et al.  Equations of motion of self-gravitatingN-body systems in the first post-Minkowskian approximation , 2018, Physical Review D.

[18]  T. Damour,et al.  Gravitational spin-orbit coupling in binary systems at the second post-Minkowskian approximation , 2018, Physical Review D.

[19]  T. Damour High-energy gravitational scattering and the general relativistic two-body problem , 2017, 1710.10599.

[20]  T. Damour,et al.  Gravitational spin-orbit coupling in binary systems, post-Minkowskian approximation, and effective one-body theory , 2017, 1709.00590.

[21]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[22]  B. Whiting,et al.  Gauge invariant perturbations of the Schwarzschild spacetime , 2016, 1611.08291.

[23]  Wenbin Lin,et al.  Second-order time delay by a radially moving Kerr-Newman black hole , 2016, 2007.11809.

[24]  T. Damour Gravitational scattering, post-Minkowskian approximation, and effective-one-body theory , 2016, 1609.00354.

[25]  Michael Boyle,et al.  Effective-one-body model for black-hole binaries with generic mass ratios and spins , 2013, Physical Review D.

[26]  Michael Boyle,et al.  Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms , 2012, 1202.0790.

[27]  A. Buonanno,et al.  Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings , 2011, 1107.2904.

[28]  Yi Pan,et al.  Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of nonspinning, equal-mass black holes , 2009, 0902.0790.

[29]  A. Buonanno,et al.  Fe b 20 10 An improved effective-one-body Hamiltonian for spinning blackhole binaries , 2010 .

[30]  Yi Pan,et al.  Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes , 2009, 0912.3466.

[31]  A. Buonanno,et al.  Hamiltonian of a spinning test particle in curved spacetime , 2009, 0907.4745.

[32]  B. Schutz Fundamental physics with LISA , 2009 .

[33]  Thibault Damour,et al.  Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.

[34]  T. Damour,et al.  Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling , 2008, 0803.0915.

[35]  Lawrence E. Kidder,et al.  Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit , 2007, 0710.0614.

[36]  T. Damour,et al.  Faithful effective-one-body waveforms of small-mass-ratio coalescing black-hole binaries , 2007, 0705.2519.

[37]  S. Waldman Status of LIGO at the start of the fifth science run , 2006 .

[38]  M. Loupias,et al.  The Virgo status , 2006 .

[39]  T. Damour,et al.  Transition from inspiral to plunge in precessing binaries of spinning black holes , 2005, gr-qc/0508067.

[40]  D. Heggie Gravitational Scattering , 2005, astro-ph/0512504.

[41]  H. Tagoshi,et al.  Analytic Black Hole Perturbation Approach to Gravitational Radiation , 2003, Living reviews in relativity.

[42]  T. Damour Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[43]  T. Damour,et al.  Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000, gr-qc/0005034.

[44]  T. Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.

[45]  B. Barish,et al.  LIGO and the Detection of Gravitational Waves , 1999 .

[46]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[47]  R. Ellis,et al.  Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.

[48]  H. Tagoshi,et al.  Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbit around a Schwarzschild Black Hole , 1994, gr-qc/9405062.

[49]  Finn,et al.  Gravitational radiation from a particle in circular orbit around a black hole. II. Numerical results for the nonrotating case. , 1993, Physical review. D, Particles and fields.

[50]  E. Poisson,et al.  Gravitational radiation from a particle in circular orbit around a black hole. I. Analytical results for the nonrotating case. , 1993, Physical review. D, Particles and fields.

[51]  Kojima,et al.  Equations governing the nonradial oscillations of a slowly rotating relativistic star. , 1992, Physical review. D, Particles and fields.

[52]  W. Bonnor THE MATHEMATICAL THEORY OF BLACK HOLES (International Series of Monographs on Physics, 69) , 1984 .

[53]  M. Carmeli Classical Fields: General Relativity and Gauge Theory , 1982 .

[54]  Takashi Nakamura,et al.  The regge-wheeler equation with sources for both even and odd parity perturbations of the schwarzschild geometry , 1981 .

[55]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole , 1974 .

[56]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[57]  R. Sachs Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[58]  Hermann Bondi,et al.  Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[59]  R. Sachs Gravitational waves in general relativity VIII , 1962 .

[60]  Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin , 1892 .

[61]  N. Sago,et al.  Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries , 2022 .