On validity of the quasi-static approximation in scalar-tensor theories

The discovery of cosmic acceleration motivated extensive studies of dynamical dark energy and modified gravity models. Of particular interest are the scalar-tensor theories, with a scalar field dark energy non-minimally coupled to matter. Cosmological constraints on these models often employ the quasi-static approximation (QSA), in which the dynamics of the scalar field perturbations is proportional to the perturbation in the matter density. Using the QSA simplifies the physical interpretation of the phenomenology of scalar-tensor theories, and results in substantial savings of computing time when deriving parameter constraints. Focusing on the symmetron model, which is a well-motivated scalar-tensor theory with a screening mechanism, we compare the exact solution of the linearly perturbed field equations to those obtained under the QSA and identify the range of the model parameters for which the QSA is valid. We find that the evolution of background scalar field is most important, namely, whether it is dominated by the Hubble friction or the scalar field potential. This helps us derive a criterion for the symmetron model, but same argument can be applied to other scalar-tensor theories of generalized Brans-Dicke type. We consider two scenarios, one where the scalar field is only coupled to dark matter and where it couples to all of the matter.

[1]  C. Bonvin,et al.  Modified Einstein versus modified Euler for dark matter , 2022, Nature Astronomy.

[2]  M. Martinelli,et al.  Cosmological constraints on sub-horizon scales modified gravity theories with MGCLASS II , 2021, Journal of Cosmology and Astroparticle Physics.

[3]  Gong-Bo Zhao,et al.  MGCAMB with massive neutrinos and dynamical dark energy , 2019, Journal of Cosmology and Astroparticle Physics.

[4]  Lisa Randall,et al.  What Is Dark Matter? , 2018, Nature.

[5]  Gong-Bo Zhao,et al.  Searching for scalar gravitational interactions in current and future cosmological data , 2015, 1511.05962.

[6]  L. Pogosian,et al.  Domain walls coupled to matter: the symmetron example , 2014, 1410.2857.

[7]  Mark Trodden,et al.  Beyond the Cosmological Standard Model , 2014, 1407.0059.

[8]  C. Burgess The Cosmological Constant Problem: Why it's hard to get Dark Energy from Micro-physics , 2013, 1309.4133.

[9]  J. Khoury Chameleon field theories , 2013, 1306.4326.

[10]  A. Silvestri,et al.  Practical solutions for perturbed f(R) gravity , 2012, 1210.6880.

[11]  Baojiu Li,et al.  Unified description of screened modified gravity. , 2012, 1203.4812.

[12]  Baojiu Li,et al.  Modified gravity tomography. , 2011, 1111.6613.

[13]  A. Matas,et al.  Symmetron Cosmology , 2011, 1107.2112.

[14]  Gong-Bo Zhao,et al.  Testing gravity with CAMB and CosmoMC , 2011, 1106.4543.

[15]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[16]  M. Baldi Clarifying the effects of interacting dark energy on linear and non‐linear structure formation processes , 2010, 1012.0002.

[17]  J. Khoury,et al.  Screening long-range forces through local symmetry restoration. , 2010, Physical review letters.

[18]  Mark Trodden,et al.  Approaches to understanding cosmic acceleration , 2009, 0904.0024.

[19]  Gong-Bo Zhao,et al.  Searching for modified growth patterns with tomographic surveys , 2008, 0809.3791.

[20]  A. Melchiorri,et al.  Large scale structure as a probe of gravitational slip , 2008, 0802.1068.

[21]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[22]  C. Will The Confrontation between General Relativity and Experiment , 2005, Living reviews in relativity.

[23]  J. Khoury,et al.  Chameleon fields: awaiting surprises for tests of gravity in space. , 2003, Physical review letters.

[24]  D. Pavón,et al.  Interacting quintessence solution to the coincidence problem , 2003, astro-ph/0303145.

[25]  A. Macorra Dark group: dark energy and dark matter , 2002, astro-ph/0212275.

[26]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[27]  L. Amendola Coupled Quintessence , 1999, astro-ph/9908023.

[28]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[29]  A. Riess,et al.  Results from the High-z Supernova Search Team , 1998, astro-ph/9807008.

[30]  S. Carroll QUINTESSENCE AND THE REST OF THE WORLD : SUPPRESSING LONG-RANGE INTERACTIONS , 1998, astro-ph/9806099.

[31]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[32]  N. Sugiyama,et al.  Anisotropies in the cosmic microwave background : an analytic approach , 1994, astro-ph/9407093.

[33]  A. Polyakov,et al.  The string dilation and a least coupling principle , 1994, hep-th/9401069.

[34]  E. Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1994, astro-ph/9401007.

[35]  Gibbons,et al.  Dark matter, time-varying G, and a dilaton field. , 1990, Physical review letters.

[36]  A. Vainshtein,et al.  To the problem of nonvanishing gravitation mass , 1972 .

[37]  藤井 保憲,et al.  The scalar-tensor theory of gravitation , 2003 .

[38]  Y. Fujii,et al.  The Scalar–Tensor Theory of Gravitation: Cosmology with Λ , 2003 .

[39]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .