KAM theory for the Hamiltonian derivative wave equation
暂无分享,去创建一个
Luca Biasco | Michela Procesi | Massimiliano Berti | L. Biasco | M. Berti | M. Procesi | Massimiliano Berti
[1] Sergei Kuksin,et al. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum , 1987 .
[2] Luigi Chierchia,et al. KAM Tori for 1D Nonlinear Wave Equations¶with Periodic Boundary Conditions , 1999, chao-dyn/9904036.
[3] P. Gérard,et al. Effective integrable dynamics for some nonlinear wave equation , 2011, 1110.5719.
[4] M. Berti,et al. Quasi-periodic solutions with Sobolev regularity of NLS on T^d with a multiplicative potential , 2010, 1012.1427.
[5] Walter Craig,et al. Newton's method and periodic solutions of nonlinear wave equations , 1993 .
[6] S. B. Kuksin. Analysis of Hamiltonian PDEs , 2000 .
[7] Jiirgen,et al. On Elliptic Lower Dimensional Tori in Hamiltonian Systems , 2005 .
[8] Jiangong You,et al. A KAM Theorem for Hamiltonian Partial Differential Equations in Higher Dimensional Spaces , 2006 .
[9] W. Wang. Supercritical Nonlinear Schr\"odinger equations I: Quasi-Periodic Solutions , 2010 .
[10] Jean-Marc Delort,et al. A quasi-linear Birkhoff normal forms method : application to the quasi-linear Klein-Gordon equations on S[1] , 2012 .
[11] M. Berti,et al. Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb {T}^d$ with a multiplicative potential , 2013 .
[12] M. Berti,et al. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential , 2012, 1202.2424.
[13] C. Eugene Wayne,et al. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory , 1990 .
[14] L. Biasco,et al. Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs , 2011 .
[15] Dario Bambusi,et al. Birkhoff normal form for partial differential equations with tame modulus , 2006 .
[16] J. Pöschel,et al. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation , 1996 .
[17] Jean Bourgain,et al. Green's Function Estimates for Lattice Schrödinger Operators and Applications. , 2004 .
[18] Jurgen Poschel. Quasi-periodic solutions for a nonlinear wave equation , 2007 .
[19] Michela Procesi,et al. Quasi-Töplitz Functions in KAM Theorem , 2011, SIAM J. Math. Anal..
[20] Anomalous Transport: A Mathematical Framework , 1997, cond-mat/9706239.
[21] Jean Bourgain,et al. QUASI-PERIODIC SOLUTIONS OF HAMILTONIAN PERTURBATIONS OF 2D LINEAR SCHRODINGER EQUATIONS , 1998 .
[22] N V Nikolenko,et al. The method of Poincaré normal forms in problems of integrability of equations of evolution type , 1986 .
[23] S. B. Kuksin,et al. KAM for the Non-Linear Schr\"odinger Equation , 2007, 0709.2393.
[24] Jeremie Szeftel,et al. Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres , 2004 .
[25] Jean Bourgain,et al. Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE , 1994 .
[26] Laurent Thomann. A P ] 1 9 A pr 2 01 1 KAM FOR THE QUANTUM HARMONIC OSCILLATOR by Benôıt Grébert , 2011 .
[27] J. You,et al. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation , 2011 .
[28] Xiaoping Yuan,et al. A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations , 2011 .
[29] J. Pöschel,et al. Inverse spectral theory , 1986 .
[30] W. Craig. Problèmes de petits diviseurs dans les équations aux dérivées partielles , 2000 .
[31] Sergej B. Kuksin,et al. A KAM-theorem for equations of the Korteweg--de Vries type , 1998 .