KAM theory for the Hamiltonian derivative wave equation

We prove an infinite dimensional KAM theorem which implies the existence of Cantor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave equations.

[1]  Sergei Kuksin,et al.  Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum , 1987 .

[2]  Luigi Chierchia,et al.  KAM Tori for 1D Nonlinear Wave Equations¶with Periodic Boundary Conditions , 1999, chao-dyn/9904036.

[3]  P. Gérard,et al.  Effective integrable dynamics for some nonlinear wave equation , 2011, 1110.5719.

[4]  M. Berti,et al.  Quasi-periodic solutions with Sobolev regularity of NLS on T^d with a multiplicative potential , 2010, 1012.1427.

[5]  Walter Craig,et al.  Newton's method and periodic solutions of nonlinear wave equations , 1993 .

[6]  S. B. Kuksin Analysis of Hamiltonian PDEs , 2000 .

[7]  Jiirgen,et al.  On Elliptic Lower Dimensional Tori in Hamiltonian Systems , 2005 .

[8]  Jiangong You,et al.  A KAM Theorem for Hamiltonian Partial Differential Equations in Higher Dimensional Spaces , 2006 .

[9]  W. Wang Supercritical Nonlinear Schr\"odinger equations I: Quasi-Periodic Solutions , 2010 .

[10]  Jean-Marc Delort,et al.  A quasi-linear Birkhoff normal forms method : application to the quasi-linear Klein-Gordon equations on S[1] , 2012 .

[11]  M. Berti,et al.  Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb {T}^d$ with a multiplicative potential , 2013 .

[12]  M. Berti,et al.  Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential , 2012, 1202.2424.

[13]  C. Eugene Wayne,et al.  Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory , 1990 .

[14]  L. Biasco,et al.  Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs , 2011 .

[15]  Dario Bambusi,et al.  Birkhoff normal form for partial differential equations with tame modulus , 2006 .

[16]  J. Pöschel,et al.  Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation , 1996 .

[17]  Jean Bourgain,et al.  Green's Function Estimates for Lattice Schrödinger Operators and Applications. , 2004 .

[18]  Jurgen Poschel Quasi-periodic solutions for a nonlinear wave equation , 2007 .

[19]  Michela Procesi,et al.  Quasi-Töplitz Functions in KAM Theorem , 2011, SIAM J. Math. Anal..

[20]  Anomalous Transport: A Mathematical Framework , 1997, cond-mat/9706239.

[21]  Jean Bourgain,et al.  QUASI-PERIODIC SOLUTIONS OF HAMILTONIAN PERTURBATIONS OF 2D LINEAR SCHRODINGER EQUATIONS , 1998 .

[22]  N V Nikolenko,et al.  The method of Poincaré normal forms in problems of integrability of equations of evolution type , 1986 .

[23]  S. B. Kuksin,et al.  KAM for the Non-Linear Schr\"odinger Equation , 2007, 0709.2393.

[24]  Jeremie Szeftel,et al.  Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres , 2004 .

[25]  Jean Bourgain,et al.  Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE , 1994 .

[26]  Laurent Thomann A P ] 1 9 A pr 2 01 1 KAM FOR THE QUANTUM HARMONIC OSCILLATOR by Benôıt Grébert , 2011 .

[27]  J. You,et al.  An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation , 2011 .

[28]  Xiaoping Yuan,et al.  A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations , 2011 .

[29]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[30]  W. Craig Problèmes de petits diviseurs dans les équations aux dérivées partielles , 2000 .

[31]  Sergej B. Kuksin,et al.  A KAM-theorem for equations of the Korteweg--de Vries type , 1998 .