A brief history of RNAi: the silence of the genes

The use of the RNA interference (RNAi) pathway to eliminate gene products has greatly facilitated the understanding of gene function. Behind this remarkable pathway is an intricate network of proteins that ensures the degradation of the target mRNA. In this review, we explore the history of RNAi as well as highlighting recent discoveries.—Sen, G. L., Blau, H. M. A brief history of RNAi: the silence of the genes. FASEB J. 20, 1293–1299 (2006)

[1]  C. Napoli,et al.  Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. , 1990, The Plant cell.

[2]  H. Vaucheret,et al.  AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. Headon,et al.  A Link Between mRNA Turnover and RNA Interference in Arabidopsis , 2004, Science.

[4]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[5]  E. Izaurralde,et al.  SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. , 2004, Molecular cell.

[6]  P. Green,et al.  AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. , 2004, Molecular cell.

[7]  J. Yates,et al.  A role for the P-body component GW182 in microRNA function , 2005, Nature Cell Biology.

[8]  J. Rossi,et al.  Uncoupling of RNAi from active translation in mammalian cells. , 2005, RNA.

[9]  Thomas Tuschl,et al.  RISC is a 5' phosphomonoester-producing RNA endonuclease. , 2004, Genes & development.

[10]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[11]  Helen M Blau,et al.  mRNA translation is not a prerequisite for small interfering RNA-mediated mRNA cleavage. , 2005, Differentiation; research in biological diversity.

[12]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[13]  Gary Ruvkun,et al.  Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes , 2003, Nature.

[14]  Roy Parker,et al.  General Translational Repression by Activators of mRNA Decapping , 2005, Cell.

[15]  Gary Ruvkun,et al.  A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity , 2003, Nature Genetics.

[16]  Haiwei Song,et al.  The enzymes and control of eukaryotic mRNA turnover , 2004, Nature Structural &Molecular Biology.

[17]  M. Kiledjian,et al.  Identification of an erythroid‐enriched endoribonuclease activity involved in specific mRNA cleavage , 2000, The EMBO journal.

[18]  M. Mann,et al.  miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. , 2002, Genes & development.

[19]  Erik J. Sontheimer,et al.  Assembly and function of RNA silencing complexes , 2005, Nature Reviews Molecular Cell Biology.

[20]  P. Zamore,et al.  ATP Requirements and Small Interfering RNA Structure in the RNA Interference Pathway , 2001, Cell.

[21]  David P. Bartel,et al.  Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes , 2005, Cell.

[22]  Henning Urlaub,et al.  Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi , 2002, Cell.

[23]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[24]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[25]  Elisa Izaurralde,et al.  Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. , 2005, RNA.

[26]  Jean-Marie Buerstedde,et al.  A Mouse Cytoplasmic Exoribonuclease (mXRN1p) with Preference for G4 Tetraplex Substrates , 1997, The Journal of cell biology.

[27]  M. Kiledjian,et al.  The Poly(A)-Binding Protein and an mRNA Stability Protein Jointly Regulate an Endoribonuclease Activity , 2000, Molecular and Cellular Biology.

[28]  E. Chan,et al.  Disruption of GW bodies impairs mammalian RNA interference , 2005, Nature Cell Biology.

[29]  Xiaodong Wang,et al.  Argonaute2 Cleaves the Anti-Guide Strand of siRNA during RISC Activation , 2005, Cell.

[30]  Roy Parker,et al.  Decapping and Decay of Messenger RNA Occur in Cytoplasmic Processing Bodies , 2003 .

[31]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[32]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[33]  C. Mello,et al.  Genetic requirements for inheritance of RNAi in C. elegans. , 2000, Science.

[34]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.

[35]  H. Blau,et al.  Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies , 2005, Nature Cell Biology.

[36]  G. Macino,et al.  Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[38]  W. Filipowicz,et al.  Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[40]  Shinji Yamaguchi,et al.  RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. , 2002, Genes & development.

[41]  R. Parker,et al.  The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex , 1998, The EMBO journal.

[42]  Olivier Voinnet,et al.  Systemic signalling in gene silencing , 1997, Nature.

[43]  E. van Dijk,et al.  Identification of RNA sequences and structures involved in site-specific cleavage of IGF-II mRNAs. , 1998, RNA.

[44]  S. Hammond,et al.  An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells , 2000, Nature.

[45]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[46]  P. Mantica,et al.  The Decay of , 2000 .

[47]  L. Chin,et al.  A Genetic Screen for Candidate Tumor Suppressors Identifies REST , 2005, Cell.

[48]  M. Carmell,et al.  Posttranscriptional Gene Silencing in Plants , 2006 .

[49]  Reuven Agami,et al.  A large-scale RNAi screen in human cells identifies new components of the p53 pathway , 2004, Nature.

[50]  B. Séraphin,et al.  Cytoplasmic foci are sites of mRNA decay in human cells , 2004, The Journal of cell biology.

[51]  G. Macino,et al.  Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences , 1992, Molecular microbiology.

[52]  Michael Q. Zhang,et al.  The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. , 2002, Genes & development.

[53]  Helen M Blau,et al.  Restriction enzyme–generated siRNA (REGS) vectors and libraries , 2004, Nature Genetics.

[54]  M. Iino,et al.  Enzymatic production of RNAi libraries from cDNAs , 2004, Nature Genetics.

[55]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[56]  E. Sontheimer,et al.  A Dicer-2-Dependent 80S Complex Cleaves Targeted mRNAs during RNAi in Drosophila , 2004, Cell.

[57]  R. Bernards,et al.  A Genetic Screen Identifies PITX1 as a Suppressor of RAS Activity and Tumorigenicity , 2005, Cell.

[58]  Andrew Fire,et al.  The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans , 1999, Cell.

[59]  Anastasia Khvorova,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[60]  K. Kemphues,et al.  par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed , 1995, Cell.