Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons

[1]  Dong Won Kim,et al.  Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons , 2020, bioRxiv.

[2]  Jeremiah Y. Cohen,et al.  A Clock-Driven Neural Network Critical for Arousal , 2020, bioRxiv.

[3]  Jun Yan,et al.  Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus , 2020, Nature Neuroscience.

[4]  PhD Xiang Wang,et al.  Neuregulin-1 , 2020, Definitions.

[5]  Vivian M. Hernández,et al.  Npas1+-Nkx2.1+ Neurons Are an Integral Part of the Cortico-pallido-cortical Loop , 2019, The Journal of Neuroscience.

[6]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[7]  David J. Anderson,et al.  Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior , 2019, Cell.

[8]  Patrick F. Sullivan,et al.  Obesity remodels activity and transcriptional state of a lateral hypothalamic brake on feeding , 2019, Science.

[9]  A. Kundaje,et al.  The ENCODE Blacklist: Identification of Problematic Regions of the Genome , 2019, Scientific Reports.

[10]  Z Josh Huang,et al.  The diversity of GABAergic neurons and neural communication elements , 2019, Nature Reviews Neuroscience.

[11]  Dong Won Kim,et al.  The cellular and molecular landscape of hypothalamic patterning and differentiation , 2019, bioRxiv.

[12]  Mohan Bolisetty,et al.  Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons , 2019, Nature Neuroscience.

[13]  Brian S. Clark,et al.  ASCOT identifies key regulators of neuronal subtype-specific splicing , 2018, Nature Communications.

[14]  Henry Markram,et al.  A Cell Atlas for the Mouse Brain , 2018, Front. Neuroinform..

[15]  Nimrod D. Rubinstein,et al.  Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.

[16]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[17]  Oscar Marín,et al.  Development and Functional Diversification of Cortical Interneurons , 2018, Neuron.

[18]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[19]  Jiangyang Zhang,et al.  Canonical Wnt signaling regulates patterning, differentiation and nucleogenesis in mouse hypothalamus and prethalamus , 2018, bioRxiv.

[20]  D. Zack,et al.  ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration , 2018, Nature Communications.

[21]  Christoph Hafemeister,et al.  Developmental diversification of cortical inhibitory interneurons , 2017, Nature.

[22]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[23]  G. Neves,et al.  Modulation of Apoptosis Controls Inhibitory Interneuron Number in the Cortex , 2017, bioRxiv.

[24]  Ian R. Wickersham,et al.  Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep , 2017, Nature.

[25]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[26]  Yi Zhang,et al.  Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. , 2017, Cell reports.

[27]  O. Marín,et al.  Neuregulin 3 Mediates Cortical Plate Invasion and Laminar Allocation of GABAergic Interneurons , 2017, Cell reports.

[28]  Kevin W. Eliceiri,et al.  ImageJ2: ImageJ for the next generation of scientific image data , 2017, BMC Bioinformatics.

[29]  Evan Z. Macosko,et al.  A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types , 2017, Nature Neuroscience.

[30]  P. Wong,et al.  An LHX1-Regulated Transcriptional Network Controls Sleep/Wake Coupling and Thermal Resistance of the Central Circadian Clockworks , 2017, Current Biology.

[31]  Yuchio Yanagawa,et al.  Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes , 2016, Nature Neuroscience.

[32]  A. Visel,et al.  Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons , 2016, Neuron.

[33]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[34]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[35]  C. Jasoni,et al.  Maternal Obesity in the Mouse Compromises the Blood-Brain Barrier in the Arcuate Nucleus of Offspring. , 2016, Endocrinology.

[36]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[37]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[38]  Seth Blackshaw,et al.  Patterning, specification, and differentiation in the developing hypothalamus , 2015, Wiley interdisciplinary reviews. Developmental biology.

[39]  Qing-Yu He,et al.  ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization , 2015, Bioinform..

[40]  J. García-Verdugo,et al.  The LIM Homeodomain Factor Lhx2 Is Required for Hypothalamic Tanycyte Specification and Differentiation , 2014, The Journal of Neuroscience.

[41]  D. O'Leary,et al.  Lhx1 maintains synchrony among circadian oscillator neurons of the SCN , 2014, eLife.

[42]  N. Kessaris,et al.  Genetic programs controlling cortical interneuron fate , 2014, Current Opinion in Neurobiology.

[43]  Alan C. Rupp,et al.  Lhx1 Controls Terminal Differentiation and Circadian Function of the Suprachiasmatic Nucleus , 2014, Cell reports.

[44]  J. Rubenstein,et al.  Lhx6 Directly Regulates Arx and CXCR7 to Determine Cortical Interneuron Fate and Laminar Position , 2014, Neuron.

[45]  Hong Wang,et al.  Rax regulates hypothalamic tanycyte differentiation and barrier function in mice , 2014, The Journal of comparative neurology.

[46]  J. Rubenstein,et al.  Olig1 Function Is Required to Repress Dlx1/2 and Interneuron Production in Mammalian Brain , 2014, Neuron.

[47]  Howard Y. Chang,et al.  Transposition of Native Chromatin for Fast and Sensitive Mulitmodal Analysis of Chromatin Architecture , 2014 .

[48]  L. Sussel,et al.  Nkx2.2:Cre knock‐in mouse line: A novel tool for pancreas‐ and CNS‐specific gene deletion , 2013, Genesis.

[49]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[50]  M. Denaxa,et al.  Maturation-Promoting Activity of SATB1 in MGE-Derived Cortical Interneurons , 2012, Cell reports.

[51]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[52]  I. Ellis,et al.  Differential oestrogen receptor binding is associated with clinical outcome in breast cancer , 2011, Nature.

[53]  D. O'Leary,et al.  Neuregulin repellent signaling via ErbB4 restricts GABAergic interneurons to migratory paths from ganglionic eminence to cortical destinations , 2012, Neural Development.

[54]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[55]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[56]  J. Rubenstein,et al.  Lhx6 and Lhx8 Coordinately Induce Neuronal Expression of Shh that Controls the Generation of Interneuron Progenitors , 2011, Neuron.

[57]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[58]  Seth Blackshaw,et al.  A genomic atlas of mouse hypothalamic development , 2010, Nature Neuroscience.

[59]  K. Deisseroth,et al.  Dlx5 and Dlx6 Regulate the Development of Parvalbumin-Expressing Cortical Interneurons , 2010, The Journal of Neuroscience.

[60]  S. Anderson,et al.  Prospective Isolation of Cortical Interneuron Precursors from Mouse Embryonic Stem Cells , 2010, The Journal of Neuroscience.

[61]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[62]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[63]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[64]  A. McMahon,et al.  Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. , 2010, The American journal of pathology.

[65]  Charles Watson,et al.  Chemoarchitectonic Atlas of the Mouse Brain , 2009 .

[66]  Jens Hjerling-Leffler,et al.  The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development , 2009, Neuron.

[67]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[68]  J. Rubenstein,et al.  Arx Is a Direct Target of Dlx2 and Thereby Contributes to the Tangential Migration of GABAergic Interneurons , 2008, The Journal of Neuroscience.

[69]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[70]  J. Rubenstein,et al.  Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants , 2008, The Journal of comparative neurology.

[71]  L. Mei,et al.  Neuregulin 1 in neural development, synaptic plasticity and schizophrenia , 2008, Nature Reviews Neuroscience.

[72]  S. Anderson,et al.  NKX2.1 specifies cortical interneuron fate by activating Lhx6 , 2008, Development.

[73]  S. Anderson,et al.  A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. , 2008, Developmental biology.

[74]  Matthew Grist,et al.  Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex , 2007, The Journal of Neuroscience.

[75]  Y. Yanagawa,et al.  Lhx6 Activity Is Required for the Normal Migration and Specification of Cortical Interneuron Subtypes , 2007, The Journal of Neuroscience.

[76]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[77]  S. Korsmeyer,et al.  Essential role of BAX,BAK in B cell homeostasis and prevention of autoimmune disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  M. Calcagnotto,et al.  Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy , 2005, Nature Neuroscience.

[79]  E. Pozas,et al.  GDNF and GFRα1 Promote Differentiation and Tangential Migration of Cortical GABAergic Neurons , 2005, Neuron.

[80]  Tobias M. Fischer,et al.  Short- and Long-Range Attraction of Cortical GABAergic Interneurons by Neuregulin-1 , 2004, Neuron.

[81]  K. Campbell,et al.  Tlx Controls Proliferation and Patterning of Lateral Telencephalic Progenitor Domains , 2003, The Journal of Neuroscience.

[82]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[83]  O. Marín,et al.  Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. , 2002, Development.

[84]  S. Anderson,et al.  Mutations of the Homeobox Genes Dlx-1 and Dlx-2 Disrupt the Striatal Subventricular Zone and Differentiation of Late Born Striatal Neurons , 1997, Neuron.

[85]  J. Rubenstein,et al.  Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. , 1997, Developmental biology.

[86]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[87]  J. Rubenstein,et al.  Longitudinal organization of the anterior neural plate and neural tube. , 1995, Development.

[88]  J. Rubenstein,et al.  Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt- 3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.