Photovoltaic operation in the lower atmosphere and at the surface of Venus

Low‐intensity high‐temperature (LIHT) solar cells are needed for extended photovoltaic power generation in both the lower atmosphere as well as at the surface of Venus. Double‐junction GaInP/GaAs solar cells that may be able to operate and survive, with suitable encapsulation, for several weeks on the 465°C Venus surface have been developed. These solar cells have been optimized for operation under the Venus solar spectrum, which is different from that of the Earth.

[1]  Martin A. Green,et al.  Solar cell efficiency tables (Version 53) , 2018, Progress in Photovoltaics: Research and Applications.

[2]  Richard G. Madonna,et al.  Use of an Iterative Research and Development – System Engineering Approach for the Caltech Space Solar Power Project , 2018, 2018 6th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE).

[3]  H. Atwater,et al.  Low-Intensity High-Temperature (LIHT) Solar Cells for Venus Atmosphere , 2018, IEEE Journal of Photovoltaics.

[4]  David R. Needell,et al.  Design Criteria for Micro-Optical Tandem Luminescent Solar Concentrators , 2018, IEEE Journal of Photovoltaics.

[5]  P. G. Neudeck,et al.  Chemical Analysis of Materials Exposed to Venus Temperature and Surface Atmosphere , 2018, Earth and Space Science.

[6]  J. Head,et al.  Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet , 2018 .

[7]  M. Steiner,et al.  (Al)GaInP/GaAs Tandem Solar Cells for Power Conversion at Elevated Temperature and High Concentration , 2018, IEEE Journal of Photovoltaics.

[8]  G. Hunter,et al.  Long-Lived In-Situ Solar System Explorer (LLISSE) Potential Contributions to Solar System Exploration , 2017, Bulletin of the AAS.

[9]  Nikhil Jain,et al.  AlGaInP/GaAs tandem solar cells for power conversion at 400°C and high concentration , 2017 .

[10]  R. Ewell,et al.  A Data-Driven Evaluation of the Viability of Solar Arrays at Saturn , 2017, IEEE Journal of Photovoltaics.

[11]  J. Schermer,et al.  The illumination angle dependency of CPV solar cell electrical performance , 2017 .

[12]  G. Landis,et al.  Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions , 2013 .

[13]  D. Crisp,et al.  Radiation in the Atmosphere of Venus , 2013 .

[14]  N. Ravindra,et al.  Temperature dependence of solar cell performance—an analysis , 2012 .

[15]  Jonathan Grandidier,et al.  Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres , 2011, Advanced materials.

[16]  H. Mantooth,et al.  Packaging of High-Temperature Power Semiconductor Modules , 2010 .

[17]  Shane Johnson,et al.  Temperature dependence of the Urbach edge in GaAs , 1995 .

[18]  D. Schroder,et al.  Solar cell contact resistance—A review , 1984, IEEE Transactions on Electron Devices.

[19]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[20]  M. Tomasko,et al.  Measurements of the flux of sunlight in the atmosphere of Venus , 1980 .

[21]  V. Moroz,et al.  Spectrum of the Venus day sky , 1980, Nature.

[22]  B. Tuck,et al.  Low-temperature diffusion of silver in InP , 1978 .

[23]  M. Cardona,et al.  Dependence of the direct energy gap of GaAs on hydrostatic pressure , 1975 .

[24]  A. Cuevas,et al.  Charge Carrier Separation in Solar Cells , 2015, IEEE Journal of Photovoltaics.

[25]  B. Tuck Atomic Diffusion in III–V Semiconductors , 1988 .

[26]  Henry E. Revercomb,et al.  Solar and thermal radiation in the Venus atmosphere , 1985 .

[27]  B. E. Moshkin,et al.  Scattered UV solar radiation within the clouds of Venus , 1984, Nature.