Photovoltaic operation in the lower atmosphere and at the surface of Venus
暂无分享,去创建一个
H. Atwater | D. Crisp | T. Vandervelde | A. Kirk | J. Cutts | P. Gogna | J. Grandidier | M. Osowski | Phillip Jahelka | Margaret A. Stevens | Phillip R. Jahelka
[1] Martin A. Green,et al. Solar cell efficiency tables (Version 53) , 2018, Progress in Photovoltaics: Research and Applications.
[2] Richard G. Madonna,et al. Use of an Iterative Research and Development – System Engineering Approach for the Caltech Space Solar Power Project , 2018, 2018 6th IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE).
[3] H. Atwater,et al. Low-Intensity High-Temperature (LIHT) Solar Cells for Venus Atmosphere , 2018, IEEE Journal of Photovoltaics.
[4] David R. Needell,et al. Design Criteria for Micro-Optical Tandem Luminescent Solar Concentrators , 2018, IEEE Journal of Photovoltaics.
[5] P. G. Neudeck,et al. Chemical Analysis of Materials Exposed to Venus Temperature and Surface Atmosphere , 2018, Earth and Space Science.
[6] J. Head,et al. Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet , 2018 .
[7] M. Steiner,et al. (Al)GaInP/GaAs Tandem Solar Cells for Power Conversion at Elevated Temperature and High Concentration , 2018, IEEE Journal of Photovoltaics.
[8] G. Hunter,et al. Long-Lived In-Situ Solar System Explorer (LLISSE) Potential Contributions to Solar System Exploration , 2017, Bulletin of the AAS.
[9] Nikhil Jain,et al. AlGaInP/GaAs tandem solar cells for power conversion at 400°C and high concentration , 2017 .
[10] R. Ewell,et al. A Data-Driven Evaluation of the Viability of Solar Arrays at Saturn , 2017, IEEE Journal of Photovoltaics.
[11] J. Schermer,et al. The illumination angle dependency of CPV solar cell electrical performance , 2017 .
[12] G. Landis,et al. Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions , 2013 .
[13] D. Crisp,et al. Radiation in the Atmosphere of Venus , 2013 .
[14] N. Ravindra,et al. Temperature dependence of solar cell performance—an analysis , 2012 .
[15] Jonathan Grandidier,et al. Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres , 2011, Advanced materials.
[16] H. Mantooth,et al. Packaging of High-Temperature Power Semiconductor Modules , 2010 .
[17] Shane Johnson,et al. Temperature dependence of the Urbach edge in GaAs , 1995 .
[18] D. Schroder,et al. Solar cell contact resistance—A review , 1984, IEEE Transactions on Electron Devices.
[19] M. Green. Solar Cells : Operating Principles, Technology and System Applications , 1981 .
[20] M. Tomasko,et al. Measurements of the flux of sunlight in the atmosphere of Venus , 1980 .
[21] V. Moroz,et al. Spectrum of the Venus day sky , 1980, Nature.
[22] B. Tuck,et al. Low-temperature diffusion of silver in InP , 1978 .
[23] M. Cardona,et al. Dependence of the direct energy gap of GaAs on hydrostatic pressure , 1975 .
[24] A. Cuevas,et al. Charge Carrier Separation in Solar Cells , 2015, IEEE Journal of Photovoltaics.
[25] B. Tuck. Atomic Diffusion in III–V Semiconductors , 1988 .
[26] Henry E. Revercomb,et al. Solar and thermal radiation in the Venus atmosphere , 1985 .
[27] B. E. Moshkin,et al. Scattered UV solar radiation within the clouds of Venus , 1984, Nature.