More on the Stopping and Minimum Distances of Array Codes

For q an odd prime and 1≤ m ≤ q, two specific binary qm × q<sup>2</sup> parity-check matrices denoted by H<sub>P</sub>(m, q) and H<sub>I</sub>(m, q) are considered. The corresponding binary codes, C<sub>P</sub>(m, q) and C<sub>I</sub>(m, q), respectively, are called proper and improper array codes with parameters m and q. Given a parity-check matrix H representing a binary code C, let s(H) denote the stopping distance of H and d(C) be the minimum Hamming distance of C. It is known that that s(H<sub>I</sub>(m, q)) = s(H<sub>P</sub>(m, q)) = d(C<sub>I</sub>(m, q)) = d(C<sub>P</sub>(m, q)) for m ≤ 3. In this paper, we show that these equalities do not hold for all values of m and q. In particular, although s(H<sub>P</sub>(4, 7)) = d(C<sub>P</sub>(4, 7)) = 8 we have s(H<sub>I</sub>(4, 7)) = 9 and d(C<sub>I</sub>(4, 7)) = 10. It is also shown that s(H<sub>P</sub>(5,1))dC<sub>P</sub>(5, 11)) = 10 while s(H<sub>I</sub>(5,11)) = 11 and d(C<sub>I</sub>(5, 11)) = 12. This suggests that in many cases the improper array codes would perform better than the proper array codes over the AWGN and binary erasure channels. Performance results are given which confirm this claim. The combinatorial structure of the eight-element stopping sets for H(m ≥ 4,q >; 5) is also determined.

[1]  Shu-Tao Xia,et al.  LDPC Codes Based on Berlekamp-Justesen Codes with Large Stopping Distances , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[2]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[3]  A. Vardy,et al.  Stopping sets in codes from designs , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[4]  Morteza Esmaeili,et al.  On the Stopping Distance and Stopping Redundancy of Product Codes , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[5]  Tor Helleseth,et al.  On the minimum distance of array codes as LDPC codes , 2003, IEEE Trans. Inf. Theory.

[6]  Kenji Sugiyama,et al.  On the minimum weight of simple full-length array LDPC codes , 2007, ISIT.

[7]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[8]  Bane V. Vasic,et al.  Combinatorial constructions of low-density parity-check codes for iterative decoding , 2002, IEEE Transactions on Information Theory.

[9]  Bane V. Vasic,et al.  High-rate girth-eight low-density parity-check codes on rectangular integer lattices , 2004, IEEE Transactions on Communications.

[10]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[11]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[12]  Mario Blaum,et al.  New array codes for multiple phased burst correction , 1993, IEEE Trans. Inf. Theory.

[13]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[14]  Khaled A. S. Abdel-Ghaffar,et al.  Results on Parity-Check Matrices With Optimal Stopping And/Or Dead-End Set Enumerators , 2006, IEEE Transactions on Information Theory.

[15]  Morteza Esmaeili,et al.  On the Stopping Distance of Array Code Parity-Check Matrices , 2009, IEEE Transactions on Information Theory.

[16]  Shu-Tao Xia,et al.  On the stopping distance of finite geometry LDPC codes , 2006, IEEE Commun. Lett..

[17]  Alexander Vardy,et al.  On the stopping distance and the stopping redundancy of codes , 2006, IEEE Transactions on Information Theory.

[18]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[19]  Navin Kashyap,et al.  Shortened Array Codes of Large Girth , 2005, IEEE Transactions on Information Theory.