Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations

Abstract Within the framework of the theory of the column and row determinants, we obtain explicit representation formulas (analogs of Cramer’s rule) for the minimum norm least squares solutions of quaternion matrix equations AX = B , XA = B and AXB = D .

[1]  I. Gel'fand,et al.  A theory of noncommutative determinants and characteristic functions of graphs , 1992 .

[2]  Ivan Kyrchei Cramer's rule for some quaternion matrix equations , 2010, Appl. Math. Comput..

[3]  Qing-Wen Wang,et al.  Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations , 2005 .

[4]  Li Chen,et al.  Algebraic algorithms for least squares problem in quaternionic quantum theory , 2007, Comput. Phys. Commun..

[5]  Qing-Wen Wang,et al.  THE REFLEXIVE RE-NONNEGATIVE DEFINITE SOLUTION TO A QUATERNION MATRIX EQUATION ∗ , 2008 .

[6]  Ivan Kyrchei,et al.  Cramer's rule for quaternionic systems of linear equations , 2008 .

[7]  Chen Longxuan,et al.  Definition of determinant and cramer solutions over the quaternion field , 1991 .

[8]  Qing-Wen Wang,et al.  Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications , 2008, Appl. Math. Comput..

[9]  Sanzheng Qiao,et al.  Solving constrained matrix equations and Cramer rule , 2004, Appl. Math. Comput..

[10]  Dirk Huylebrouck,et al.  The moore-penrose inverse of a matrix over a semi-simpie artinian ring , 1984 .

[11]  Qingwen Wang The general solution to a system of real quaternion matrix equations , 2005 .

[12]  Qing-Wen Wang,et al.  Condensed Cramer rule for some restricted quaternion linear equations , 2011, Appl. Math. Comput..

[13]  Huang Liping The matrix equation AXB−GXD = E over the quaternion field , 1996 .

[14]  Helmer Aslaksen,et al.  Quaternionic determinants , 1996 .

[15]  Qing-Wen Wang,et al.  Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field , 2011, Comput. Math. Appl..

[16]  Ivan Kyrchei Determinantal representations of the Moore–Penrose inverse over the quaternion skew field and corresponding Cramer's rules , 2010, 1005.0736.

[17]  Qing-Wen Wang,et al.  P-(skew)symmetric common solutions to a pair of quaternion matrix equations , 2008, Appl. Math. Comput..

[18]  Quaternion generalized singular value decomposition and its applications , 2006 .

[19]  J. Dieudonné,et al.  Les déterminants sur un corps non commutatif , 1943 .

[20]  W. Greub Linear Algebra , 1981 .

[21]  I. Gel'fand,et al.  Determinants of matrices over noncommutative rings , 1991 .

[22]  INVERSE MATRIX AND PROPERTIES OF DOUBLE DETERMINANT OVER QUATERNION FIELD , 1991 .

[23]  CaoWensheng SOLVABILITY OF A QUATERNION MATRIX EQUATION , 2002 .

[24]  Nir Cohen,et al.  The quaternionic determinant , 2000 .

[25]  Qingwen Wang,et al.  A System of Matrix Equations and a Linear Matrix Equation Over Arbitrary Regular Rings with Identity , 2003 .

[26]  Jeremy J. Gray,et al.  Years ago , 1996 .

[27]  Qing-Wen Wang,et al.  The common solution to six quaternion matrix equations with applications , 2008, Appl. Math. Comput..