An improved rate region for the classical-quantum broadcast channel

We present a new achievable rate region for the two-user binary-input classical-quantum broadcast channel. The result is a generalization of the classical Marton-Gelfand-Pinsker region and is provably larger than the best previously known rate region for classical-quantum broadcast channels. The proof of achievability is based on the recently introduced polar coding scheme and its generalization to quantum network information theory.

[1]  Rüdiger L. Urbanke,et al.  Achieving Marton's Region for Broadcast Channels Using Polar Codes , 2015, IEEE Trans. Inf. Theory.

[2]  Christoph Hirche,et al.  Polar Codes in Network Quantum Information Theory , 2016, IEEE Transactions on Information Theory.

[3]  Thomas M. Cover,et al.  Broadcast channels , 1972, IEEE Trans. Inf. Theory.

[4]  Katalin Marton,et al.  A coding theorem for the discrete memoryless broadcast channel , 1979, IEEE Trans. Inf. Theory.

[5]  Erdal Arikan Bilkent Polar coding for the Slepian-Wolf problem based on monotone chain rules , 2012, ISIT 2012.

[6]  Joseph M. Renes,et al.  Polar Codes for Private and Quantum Communication Over Arbitrary Channels , 2012, IEEE Transactions on Information Theory.

[7]  Patrick P. Bergmans,et al.  Random coding theorem for broadcast channels with degraded components , 1973, IEEE Trans. Inf. Theory.

[8]  Saikat Guha,et al.  Polar Codes for Classical-Quantum Channels , 2011, IEEE Transactions on Information Theory.

[9]  Christoph Hirche,et al.  Polar codes in quantum information theory , 2015, ArXiv.

[10]  Rüdiger L. Urbanke,et al.  Universal polar codes , 2013, 2014 IEEE International Symposium on Information Theory.

[11]  Joseph M Renes,et al.  Efficient polar coding of quantum information. , 2011, Physical review letters.

[12]  Igor Devetak,et al.  Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[13]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[14]  Jaikumar Radhakrishnan,et al.  One-Shot Marton Inner Bound for Classical-Quantum Broadcast Channel , 2014, IEEE Transactions on Information Theory.

[15]  Joseph M. Renes,et al.  Efficient Quantum Polar Codes Requiring No Preshared Entanglement , 2013, IEEE Transactions on Information Theory.

[16]  Michael Gastpar,et al.  Polar Codes for Broadcast Channels , 2013, IEEE Transactions on Information Theory.

[17]  Saikat Guha,et al.  Polar coding to achieve the Holevo capacity of a pure-loss optical channel , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[18]  Mark M. Wilde,et al.  Classical Codes for Quantum Broadcast Channels , 2011, IEEE Transactions on Information Theory.

[19]  Saikat Guha,et al.  Polar Codes for Degradable Quantum Channels , 2011, IEEE Transactions on Information Theory.

[20]  Erdal Arikan,et al.  Polar coding for the Slepian-Wolf problem based on monotone chain rules , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[21]  Jungwon Lee,et al.  Compound polar codes , 2013, 2013 Information Theory and Applications Workshop (ITA).

[22]  Joseph M. Renes,et al.  Efficient quantum channel coding scheme requiring no preshared entanglement , 2013, 2013 IEEE International Symposium on Information Theory.

[23]  Junya Honda,et al.  Polar Coding Without Alphabet Extension for Asymmetric Models , 2013, IEEE Transactions on Information Theory.

[24]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[25]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).